A note on the Galambos copula and its associated Bernstein function
Dependence Modeling (2014)
- Volume: 2, Issue: 1, page 22-29, electronic only
 - ISSN: 2300-2298
 
Access Full Article
topAbstract
topHow to cite
topJan-Frederik Mai. "A note on the Galambos copula and its associated Bernstein function." Dependence Modeling 2.1 (2014): 22-29, electronic only. <http://eudml.org/doc/266790>.
@article{Jan2014,
	abstract = {There is an infinite exchangeable sequence of random variables \{Xk\}k∈ℕ such that each finitedimensional distribution follows a min-stable multivariate exponential law with Galambos survival copula, named after [7]. A recent result of [15] implies the existence of a unique Bernstein function Ψ associated with \{Xk\}k∈ℕ via the relation Ψ(d) = exponential rate of the minimum of d members of \{Xk\}k∈ℕ. The present note provides the Lévy–Khinchin representation for this Bernstein function and explores some of its properties.},
	author = {Jan-Frederik Mai},
	journal = {Dependence Modeling},
	keywords = {Galambos copula; Bernstein function; min-stable multivariate exponential distribution; strong IDT process; infinite divisibility; MIN-stable multivariate exponential distribution},
	language = {eng},
	number = {1},
	pages = {22-29, electronic only},
	title = {A note on the Galambos copula and its associated Bernstein function},
	url = {http://eudml.org/doc/266790},
	volume = {2},
	year = {2014},
}
TY  - JOUR
AU  - Jan-Frederik Mai
TI  - A note on the Galambos copula and its associated Bernstein function
JO  - Dependence Modeling
PY  - 2014
VL  - 2
IS  - 1
SP  - 22
EP  - 29, electronic only
AB  - There is an infinite exchangeable sequence of random variables {Xk}k∈ℕ such that each finitedimensional distribution follows a min-stable multivariate exponential law with Galambos survival copula, named after [7]. A recent result of [15] implies the existence of a unique Bernstein function Ψ associated with {Xk}k∈ℕ via the relation Ψ(d) = exponential rate of the minimum of d members of {Xk}k∈ℕ. The present note provides the Lévy–Khinchin representation for this Bernstein function and explores some of its properties.
LA  - eng
KW  - Galambos copula; Bernstein function; min-stable multivariate exponential distribution; strong IDT process; infinite divisibility; MIN-stable multivariate exponential distribution
UR  - http://eudml.org/doc/266790
ER  - 
References
top- [1] S. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 1–66 (1929). Zbl55.0142.07
 - [2] L. Bondesson, Classes of infinitely divisible distributions and densities, Z. Wahr. Verw. Geb. 57:1 (1981) pp. 39–71. Zbl0464.60016
 - [3] A. Charpentier, J. Segers, Tails of multivariate Archimedean copulas, J. Multivariate Anal. 100:7 (2009) pp. 1521–1537. [WoS][Crossref] Zbl1165.62038
 - [4] B. De Finetti, Funzione caratteristica di un fenomeno allatorio, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 4 (1931) pp. 251–299.
 - [5] B. De Finetti, La prévision: ses lois logiques, ses sources subjectives, Ann. Inst. Henri Poincaré Probab. Stat. 7 (1937) pp. 1–68.
 - [6] K. Es-Sebaiy, Y. Ouknine, How rich is the class of processes which are infinitely divisible with respect to time, Statist. Probab. Lett. 78 (2008) pp. 537–547. [WoS][Crossref] Zbl1216.60042
 - [7] J. Galambos, Order statistics of samples from multivariate distributions, J. Amer. Statist. Assoc. 70:351 (1975) pp. 674– 680. Zbl0315.62022
 - [8] G. Gudendorf, J. Segers, Extreme-value copulas, in Copula Theory and Its Applications – Lecture Notes in Statistics, Springer (2010) pp. 127–145. Zbl06085266
 - [9] A. Hakassou, Y. Ouknine, A contribution to the study of IDT processes, Working paper, retrievable from http://univi.net/spas/spada2010/tc-ouknine.pdf (2012).
 - [10] F. Hausdorff, Summationsmethoden und Momentfolgen I, Math. Z. 9 (1921) pp. 74–109. [Crossref] Zbl48.2005.01
 - [11] F. Hausdorff, Momentenproblem für ein endliches Intervall, Math. Z. 16 (1923) pp. 220–248. [Crossref] Zbl49.0193.01
 - [12] E. Hewitt, L.J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955) pp. 470–501. Zbl0066.29604
 - [13] H. Joe, Multivariate models and dependence concepts, Chapman & Hall/CRC (1997). Zbl0990.62517
 - [14] J.-F. Mai, M. Scherer, Lévy-frailty copulas, J. Multivariate Anal. 100 (2009) pp. 1567–1585. [Crossref] Zbl1162.62048
 - [15] J.-F. Mai, M. Scherer, Characterization of extendible distributions with exponential minima via stochastic processes that are infinitely divisible with respect to time, Extremes, in press, DOI 10.1007/s10687-013-0175-4 (2013). [Crossref]
 - [16] R. Mansuy, On processes which are infinitely divisible with respect to time, Working paper, retrievable from http://arxiv.org/abs/math/0504408 (2005).
 - [17] P. Ressel, De Finetti type theorems: an analytical approach, Ann. Probab. 13 (1985) pp. 898–922. [Crossref] Zbl0579.60012
 - [18] K.-I. Sato, Lévy processes and infinitely divisible laws, Cambridge University Press (1999).
 - [19] R. Schilling, R. Song, Z. Vondracek, Bernstein functions, De Gruyter (2010).
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.