A note on the Galambos copula and its associated Bernstein function

Jan-Frederik Mai

Dependence Modeling (2014)

  • Volume: 2, Issue: 1, page 22-29, electronic only
  • ISSN: 2300-2298

Abstract

top
There is an infinite exchangeable sequence of random variables {Xk}k∈ℕ such that each finitedimensional distribution follows a min-stable multivariate exponential law with Galambos survival copula, named after [7]. A recent result of [15] implies the existence of a unique Bernstein function Ψ associated with {Xk}k∈ℕ via the relation Ψ(d) = exponential rate of the minimum of d members of {Xk}k∈ℕ. The present note provides the Lévy–Khinchin representation for this Bernstein function and explores some of its properties.

How to cite

top

Jan-Frederik Mai. "A note on the Galambos copula and its associated Bernstein function." Dependence Modeling 2.1 (2014): 22-29, electronic only. <http://eudml.org/doc/266790>.

@article{Jan2014,
abstract = {There is an infinite exchangeable sequence of random variables \{Xk\}k∈ℕ such that each finitedimensional distribution follows a min-stable multivariate exponential law with Galambos survival copula, named after [7]. A recent result of [15] implies the existence of a unique Bernstein function Ψ associated with \{Xk\}k∈ℕ via the relation Ψ(d) = exponential rate of the minimum of d members of \{Xk\}k∈ℕ. The present note provides the Lévy–Khinchin representation for this Bernstein function and explores some of its properties.},
author = {Jan-Frederik Mai},
journal = {Dependence Modeling},
keywords = {Galambos copula; Bernstein function; min-stable multivariate exponential distribution; strong IDT process; infinite divisibility; MIN-stable multivariate exponential distribution},
language = {eng},
number = {1},
pages = {22-29, electronic only},
title = {A note on the Galambos copula and its associated Bernstein function},
url = {http://eudml.org/doc/266790},
volume = {2},
year = {2014},
}

TY - JOUR
AU - Jan-Frederik Mai
TI - A note on the Galambos copula and its associated Bernstein function
JO - Dependence Modeling
PY - 2014
VL - 2
IS - 1
SP - 22
EP - 29, electronic only
AB - There is an infinite exchangeable sequence of random variables {Xk}k∈ℕ such that each finitedimensional distribution follows a min-stable multivariate exponential law with Galambos survival copula, named after [7]. A recent result of [15] implies the existence of a unique Bernstein function Ψ associated with {Xk}k∈ℕ via the relation Ψ(d) = exponential rate of the minimum of d members of {Xk}k∈ℕ. The present note provides the Lévy–Khinchin representation for this Bernstein function and explores some of its properties.
LA - eng
KW - Galambos copula; Bernstein function; min-stable multivariate exponential distribution; strong IDT process; infinite divisibility; MIN-stable multivariate exponential distribution
UR - http://eudml.org/doc/266790
ER -

References

top
  1. [1] S. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 1–66 (1929). Zbl55.0142.07
  2. [2] L. Bondesson, Classes of infinitely divisible distributions and densities, Z. Wahr. Verw. Geb. 57:1 (1981) pp. 39–71. Zbl0464.60016
  3. [3] A. Charpentier, J. Segers, Tails of multivariate Archimedean copulas, J. Multivariate Anal. 100:7 (2009) pp. 1521–1537. [WoS][Crossref] Zbl1165.62038
  4. [4] B. De Finetti, Funzione caratteristica di un fenomeno allatorio, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 4 (1931) pp. 251–299. 
  5. [5] B. De Finetti, La prévision: ses lois logiques, ses sources subjectives, Ann. Inst. Henri Poincaré Probab. Stat. 7 (1937) pp. 1–68. 
  6. [6] K. Es-Sebaiy, Y. Ouknine, How rich is the class of processes which are infinitely divisible with respect to time, Statist. Probab. Lett. 78 (2008) pp. 537–547. [WoS][Crossref] Zbl1216.60042
  7. [7] J. Galambos, Order statistics of samples from multivariate distributions, J. Amer. Statist. Assoc. 70:351 (1975) pp. 674– 680. Zbl0315.62022
  8. [8] G. Gudendorf, J. Segers, Extreme-value copulas, in Copula Theory and Its Applications – Lecture Notes in Statistics, Springer (2010) pp. 127–145. Zbl06085266
  9. [9] A. Hakassou, Y. Ouknine, A contribution to the study of IDT processes, Working paper, retrievable from http://univi.net/spas/spada2010/tc-ouknine.pdf (2012). 
  10. [10] F. Hausdorff, Summationsmethoden und Momentfolgen I, Math. Z. 9 (1921) pp. 74–109. [Crossref] Zbl48.2005.01
  11. [11] F. Hausdorff, Momentenproblem für ein endliches Intervall, Math. Z. 16 (1923) pp. 220–248. [Crossref] Zbl49.0193.01
  12. [12] E. Hewitt, L.J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955) pp. 470–501. Zbl0066.29604
  13. [13] H. Joe, Multivariate models and dependence concepts, Chapman & Hall/CRC (1997). Zbl0990.62517
  14. [14] J.-F. Mai, M. Scherer, Lévy-frailty copulas, J. Multivariate Anal. 100 (2009) pp. 1567–1585. [Crossref] Zbl1162.62048
  15. [15] J.-F. Mai, M. Scherer, Characterization of extendible distributions with exponential minima via stochastic processes that are infinitely divisible with respect to time, Extremes, in press, DOI 10.1007/s10687-013-0175-4 (2013). [Crossref] 
  16. [16] R. Mansuy, On processes which are infinitely divisible with respect to time, Working paper, retrievable from http://arxiv.org/abs/math/0504408 (2005). 
  17. [17] P. Ressel, De Finetti type theorems: an analytical approach, Ann. Probab. 13 (1985) pp. 898–922. [Crossref] Zbl0579.60012
  18. [18] K.-I. Sato, Lévy processes and infinitely divisible laws, Cambridge University Press (1999). 
  19. [19] R. Schilling, R. Song, Z. Vondracek, Bernstein functions, De Gruyter (2010). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.