# Semiring of Sets: Examples

Formalized Mathematics (2014)

- Volume: 22, Issue: 1, page 85-88
- ISSN: 1426-2630

## Access Full Article

top## Abstract

top## How to cite

topRoland Coghetto. "Semiring of Sets: Examples." Formalized Mathematics 22.1 (2014): 85-88. <http://eudml.org/doc/266815>.

@article{RolandCoghetto2014,

abstract = {This article proposes the formalization of some examples of semiring of sets proposed by Goguadze [8] and Schmets [13].},

author = {Roland Coghetto},

journal = {Formalized Mathematics},

keywords = {semiring of sets},

language = {eng},

number = {1},

pages = {85-88},

title = {Semiring of Sets: Examples},

url = {http://eudml.org/doc/266815},

volume = {22},

year = {2014},

}

TY - JOUR

AU - Roland Coghetto

TI - Semiring of Sets: Examples

JO - Formalized Mathematics

PY - 2014

VL - 22

IS - 1

SP - 85

EP - 88

AB - This article proposes the formalization of some examples of semiring of sets proposed by Goguadze [8] and Schmets [13].

LA - eng

KW - semiring of sets

UR - http://eudml.org/doc/266815

ER -

## References

top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990.
- [3] Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics, 2(1):65-69, 1991.
- [4] Grzegorz Bancerek. Minimal signature for partial algebra. Formalized Mathematics, 5 (3):405-414, 1996.
- [5] Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2): 263-269, 1992.
- [6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [8] D.F. Goguadze. About the notion of semiring of sets. Mathematical Notes, 74:346-351, 2003. ISSN 0001-4346. doi:10.1023/A:1026102701631.[Crossref] Zbl1072.28001
- [9] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
- [10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- [11] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
- [12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- [13] Jean Schmets. Théorie de la mesure. Notes de cours, Université de Liège, 146 pages, 2004.
- [14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
- [15] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
- [16] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.
- [17] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187-190, 1990.
- [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.