Banach Algebra of Bounded Complex-Valued Functionals

Katuhiko Kanazashi; Hiroyuki Okazaki; Yasunari Shidama

Formalized Mathematics (2011)

  • Volume: 19, Issue: 2, page 121-126
  • ISSN: 1426-2630

Abstract

top
In this article, we describe some basic properties of the Banach algebra which is constructed from all bounded complex-valued functionals.

How to cite

top

Katuhiko Kanazashi, Hiroyuki Okazaki, and Yasunari Shidama. "Banach Algebra of Bounded Complex-Valued Functionals." Formalized Mathematics 19.2 (2011): 121-126. <http://eudml.org/doc/266907>.

@article{KatuhikoKanazashi2011,
abstract = {In this article, we describe some basic properties of the Banach algebra which is constructed from all bounded complex-valued functionals.},
author = {Katuhiko Kanazashi, Hiroyuki Okazaki, Yasunari Shidama},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {121-126},
title = {Banach Algebra of Bounded Complex-Valued Functionals},
url = {http://eudml.org/doc/266907},
volume = {19},
year = {2011},
}

TY - JOUR
AU - Katuhiko Kanazashi
AU - Hiroyuki Okazaki
AU - Yasunari Shidama
TI - Banach Algebra of Bounded Complex-Valued Functionals
JO - Formalized Mathematics
PY - 2011
VL - 19
IS - 2
SP - 121
EP - 126
AB - In this article, we describe some basic properties of the Banach algebra which is constructed from all bounded complex-valued functionals.
LA - eng
UR - http://eudml.org/doc/266907
ER -

References

top
  1. [1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990. 
  2. [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. 
  3. [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. 
  4. [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  5. [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  6. [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  7. [7] Noboru Endou. Banach algebra of bounded complex linear operators. Formalized Mathematics, 12(3):237-242, 2004. 
  8. [8] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004. 
  9. [9] Noboru Endou. Complex valued functions space. Formalized Mathematics, 12(3):231-235, 2004. 
  10. [10] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990. 
  11. [11] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990. 
  12. [12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990. 
  13. [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  14. [14] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Property of complex functions. Formalized Mathematics, 9(1):179-184, 2001. Zbl0951.93523
  15. [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  16. [16] Yasunari Shidama, Hikofumi Suzuki, and Noboru Endou. Banach algebra of bounded functionals. Formalized Mathematics, 16(2):115-122, 2008, doi:10.2478/v10037-008-0017-z.[Crossref] 
  17. [17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990. 
  18. [18] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990. 
  19. [19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990. 
  20. [20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  21. [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.