Multi-core CPU or GPU-accelerated Multiscale Modeling for Biomolecular Complexes
Tao Liao; Yongjie Zhang; Peter M. Kekenes-Huskey; Yuhui Cheng; Anushka Michailova; Andrew D. McCulloch; Michael Holst; J. Andrew McCammon
Molecular Based Mathematical Biology (2013)
- Volume: 1, page 164-179
- ISSN: 2299-3266
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Albou, B. Schwarz, O. Poch, J. Wurtz, and D. Moras. Defining and characterizing protein surface using alpha shapes. Proteins, 76(1):1–12, 2009. [Crossref][PubMed]
- [2] S. Artemova, S. Grudinin, and S. Redon. A comparison of neighbor search algorithms for large rigid molecules. Journal of Computational Chemistry, 32(13):2865–2877, 2011. [Crossref]
- [3] C. L. Bajaj, J. Castrillon-Candas, V. Siddavanahalli, and Z. Xu. Compressed representations of macromolecular structures and properties. Structure, 13:463–471, 2005. [Crossref][PubMed]
- [4] C. L. Bajaj, V. Pascucci, and D. Schikore. Seed sets and search structures for optimal isocontour extraction. Technical report, Texas Institute of Computational and Applied Mathematics, 1999.
- [5] C. L. Bajaj, V. Pascucci, A. Shamir, R. J. Holt, and A. N. Netravali. Multiresolution molecular shapes. Technical report, TICAM Technical Report, 1999.
- [6] C. L. Bajaj, V. Pascucci, A. Shamir, R. J. Holt, and A. N. Netravali. Dynamic maintenance and visualization of molecular surfaces. Discrete Applied Mathematics, 127(1):23–51, 2003. [Crossref] Zbl1047.92051
- [7] C. L. Bajaj and V. Siddavanahalli. Fast error-bounded surfaces and derivatives computation for volumetric particle data. Technical report, ICES 06-03, 2006.
- [8] J. F. Blinn. A generalization of algebraic surface drawing. ACM Transactions on Graphics, 1(3):235–256, 1982. [Crossref]
- [9] Y. Cheng, C. A. Chang, Z. Yu, Y. Zhang, M. Sun, T. S. Leyh, M. J. Holst, and J. A. Mccammon. Diffusional channeling in the sulfate activating complex: combined continuum modeling and coarsegrained Brownian dynamics studies. Biophysical Journal, 95(10):4659–4667, 2008. [Crossref]
- [10] M. L. Connolly. Analytical molecular surface calculation. Journal of Applied Crystallography, 16(5):548–558, 1983. [Crossref]
- [11] M. L. Connolly. Molecular surface: A Review. Network Science, 1996.
- [12] J. P. D’Amato and M. Vénere. A CPU-GPU framework for optimizing the quality of large meshes. Journal of Parallel and Distributed Computing, (0):–, 2013.
- [13] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Transactions on Graphics, 13(1):43–72, 1994. [Crossref] Zbl0806.68107
- [14] R. Fonseca and P. Winter. Bounding volumes for proteins: a comparative study. Journal of Computational Biology, 19(10):1203 – 1213, 2012. [Crossref]
- [15] W. Geng and F. Jacob. A GPU-accelerated direct-sum boundary integral Poisson-Boltzmann solver. Computer Physics Communications, 184:1490–1496, 2013. [Crossref] Zbl1310.78017
- [16] W. Geng and R. Krasny. A treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules. Journal of Computational Physics, 247:62–87, 2013. [Crossref]
- [17] W. Geng and S. Zhao. Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann equation. Molecular Based Mathematical Biology, 1:109–123, 2013. Zbl1276.65063
- [18] J. Giard and B. Macq. Molecular surface mesh generation by filtering electron density map. International Journal of Biomedical Imaging, pages 263–269, 2010.
- [19] J. A. Grant and B. T. Pickup. A Gaussian description of molecular shape. Journal of Physical Chemistry, 99(11):3503– 3510, 1995. [Crossref]
- [20] M. Holst, N. Baker, and F. Wang. Adaptive multilevel finite element solution of the Poisson-Boltzmann equation algorithms I: algorithms and examples. Journal of Computational Chemistry, 21:1319–1342, 2000. [Crossref]
- [21] L. Hu, D. Chen, and G. Wei. High-order fractional partial differential equation transform for molecular surface construction. Molecular Based Mathematical Biology, 1:1–25, 2013. Zbl1277.35338
- [22] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of Hermite data. SIGGRAPH, 21:339–346, 2002.
- [23] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998. Zbl0915.68129
- [24] B. Kim, K. J. Kim, and J. K. Seong. GPU accelerated molecular surface computing. Appl. Math, 6(1S):185S––194S, 2012.
- [25] D.-S. Kim, J.-K. Kim, Y Cho, and C.-M. Kim. Querying simplexes in quasi-triangulation. Computer-Aided Design, 44(2):85 – 98, 2012. [Crossref]
- [26] D.-S. Kim, J. Seo, D. Kim, J. Ryu, and C.-H. Cho. Three-dimensional beta shapes. Computer-Aided Design, 38(11):1179–1191, 2006. [Crossref]
- [27] P. Laug and H. Borouchaki. Molecular surface modeling and meshing. Engineering with Computers, 18:199–210, 2002. [Crossref]
- [28] M. S. Lee, M. Feig, F. R. Salsbury, and C. L. Brooks. New analytic approximation to the standard molecular volume definition and its application to generalized born calculations. Journal of Computational Chemistry, 24(14):1348– 1356, 2003. [Crossref]
- [29] J. Leng, Y. Zhang, and G. Xu. A novel geometric flow-driven approach for quality improvement of segmented tetrahedral meshes. In Proceedings of the 20th International Meshing Roundtable, pages 347–364, 2012.
- [30] W. Li and S. McMains. Voxelized Minkowski sum computation on the GPU with robust culling. Computer-Aided Design, 43(10):1270 – 1283, 2011. [Crossref]
- [31] A. Liu and B. Joe. Relationship between tetrahedron shape measures. BIT Numerical Mathematics, 34:268–287, 1994. [Crossref] Zbl0806.65104
- [32] W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH, 21(4):163–169, 1987. [Crossref]
- [33] I. Lotan, F. Schwarzer, D. Halperin, and J. Latombe. Algorithm and data structures for efficient energy maintenance during Monte Carlo simulation of proteins. Journal of Computational Biology, 11(5):902 – 932, 2004. [Crossref]
- [34] B. Lu, X. Cheng, and J. A. McCammon. “New-version-fast-multipole-method" accelerated electrostatic interactions in biomolecular systems. Journal of Computational Physics, 226:1348–1366, 2007. [Crossref] Zbl1121.92007
- [35] S. Pavanaskar and S. McMains. Filling trim cracks on GPU-rendered solid models. Computer-Aided Design, 45(2):535 – 539, 2013. [Crossref]
- [36] J. Ryu, R. Park, and D.-S. Kim. Molecular surfaces on proteins via beta shapes. Computer-Aided Design, 39(12):1042–1057, 2007. [Crossref]
- [37] M. F. Sanner, A. J. Olson, and J. C. Spehner. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers, 38(3):305–20, 1996. [Crossref][PubMed]
- [38] L. Schmitz, L. F. Scheidegger, D. K. Osmari, C. A. Dietrich, and J. L. D. Comba. Efficient and quality contouring algorithms on the GPU. Computer Graphics Forum, 29:2569 – 2578, 2010. [Crossref]
- [39] J.-K. Seong, N. Baek, and K.-J. Kim. Real-time approximation of molecular interaction interfaces based on hierarchical space decomposition. Computer-Aided Design, 43(12):1598 – 1605, 2011. [Crossref]
- [40] Y. Song, Y. Zhang, C. L. Bajaj, and N. A. Baker. Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: adaptive finite element analysis. Biophysical Journal, 87(3):1558–1566, 2004. [Crossref][PubMed]
- [41] Y. Song, Y. Zhang, T. Shen, C. L. Bajaj, J. A. McCammon, and N. A. Baker. Finite element solution of the steady-state Smoluchowksi equation for rate constant calculations. Biophysical Journal, 86(4):2017–2029, 2004. [Crossref][PubMed]
- [42] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten. GPU-accelerated molecular modeling coming of age. Journal of Molecular Graphics and Modelling, 29(2):116 – 125, 2010.
- [43] A. Varshney and F. P. Brooks, Jr. Fast analytical computation of richards’s smooth molecular surface. Proceedings of the IEEE Visualization, pages 300–307, 1993.
- [44] C. L. Wang and D. Manocha. GPU-based offset surface computation using point samples. Computer-Aided Design, 45(2):321 – 330, 2013. [Crossref]
- [45] Q. Wang, J. JaJa, and A. Varshney. An efficient and scalable parallel algorithm for out-of-core isosurface extraction and rendering. Journal of Parallel and Distributed Computing, 67(5):592–603, 2007. [Crossref] Zbl1111.68777
- [46] G. Wei, Y. Sun, Y. Zhou, and M. Feig. Molecular multiresolution surfaces. arXiv math-ph/0511001, 2005.
- [47] Y. Xie, J. Cheng, B. Lu, and L. Zhang. Parallel adaptive finite element algorithms for solving the coupled electrodiffusion equations. Molecular Based Mathematical Biology, 1:90–108, 2013. Zbl1276.35143
- [48] Z. Yu, Michael J. Holst, Y. Cheng, and J. A. McCammon. Feature-preserving adaptive mesh generation for molecular shape modeling and simulation. Journal of Molecular Graphics and Modeling, 26(8):1370–1380, 2008.
- [49] D. Zhang, J. Suen, Y. Zhang, Y. Song, Z. Radic, P. Taylor, M. J. Holst, C. L. Bajaj, N. A. Baker, and J. A. Mc- Cammon. Tetrameric mouse acetylcholinesterase: continuum diffusion rate calculations by solving the steady-state Smoluchowski equation using finite element methods. Biophysical Journal, 88(3):1659–1665, 2005. [PubMed][Crossref]
- [50] Y. Zhang, C. L. Bajaj, and B. Sohn. 3D finite element meshing from imaging data. Computer Methods in Applied Mechanics and Engineering, 194(48-49):5083–5106, 2005. [Crossref] Zbl1093.65019
- [51] Y. Zhang and J. Qian. Resolving topology ambiguity for multiple-material domains. Computer Methods in Applied Mechanics and Engineering, 247–248:166–178, 2012.
- [52] Y. Zhang, G. Xu, and C. L. Bajaj. Quality meshing of implicit solvation models of biomolecular structures. Computer Aided Geometric Design, 23(6):510–530, 2006. [Crossref][PubMed] Zbl1098.92034
- [53] Q. Zheng, S. Yang, and G. Wei. Biomolecular surface construction by PDE transform. International Journal for Numerical Methods in Biomedical Engineering, 28(3):291–316, 2012. Zbl1244.92024