Integrability Formulas. Part III

Bo Li; Na Ma

Formalized Mathematics (2010)

  • Volume: 18, Issue: 2, page 143-157
  • ISSN: 1426-2630

Abstract

top
In this article, we give several differentiation and integrability formulas of composite trigonometric function.

How to cite

top

Bo Li, and Na Ma. "Integrability Formulas. Part III." Formalized Mathematics 18.2 (2010): 143-157. <http://eudml.org/doc/266987>.

@article{BoLi2010,
abstract = {In this article, we give several differentiation and integrability formulas of composite trigonometric function.},
author = {Bo Li, Na Ma},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {143-157},
title = {Integrability Formulas. Part III},
url = {http://eudml.org/doc/266987},
volume = {18},
year = {2010},
}

TY - JOUR
AU - Bo Li
AU - Na Ma
TI - Integrability Formulas. Part III
JO - Formalized Mathematics
PY - 2010
VL - 18
IS - 2
SP - 143
EP - 157
AB - In this article, we give several differentiation and integrability formulas of composite trigonometric function.
LA - eng
UR - http://eudml.org/doc/266987
ER -

References

top
  1. [1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  2. [2] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999. 
  3. [3] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001. 
  4. [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  5. [5] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990. 
  6. [6] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990. 
  7. [7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990. 
  8. [8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990. 
  9. [9] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990. 
  10. [10] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990. 
  11. [11] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  12. [12] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004. 
  13. [13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990. 
  14. [14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  15. [15] Peng Wang and Bo Li. Several differentiation formulas of special functions. Part V. Formalized Mathematics, 15(3):73-79, 2007, doi:10.2478/v10037-007-0009-4.[Crossref] 
  16. [16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  17. [17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.