The Perfect Number Theorem and Wilson's Theorem

Marco Riccardi

Formalized Mathematics (2009)

  • Volume: 17, Issue: 2, page 123-128
  • ISSN: 1426-2630

Abstract

top
This article formalizes proofs of some elementary theorems of number theory (see [1, 26]): Wilson's theorem (that n is prime iff n > 1 and (n - 1)! ≅ -1 (mod n)), that all primes (1 mod 4) equal the sum of two squares, and two basic theorems of Euclid and Euler about perfect numbers. The article also formally defines Euler's sum of divisors function Φ, proves that Φ is multiplicative and that Σk|n Φ(k) = n.

How to cite

top

Marco Riccardi. "The Perfect Number Theorem and Wilson's Theorem." Formalized Mathematics 17.2 (2009): 123-128. <http://eudml.org/doc/267018>.

@article{MarcoRiccardi2009,
abstract = {This article formalizes proofs of some elementary theorems of number theory (see [1, 26]): Wilson's theorem (that n is prime iff n > 1 and (n - 1)! ≅ -1 (mod n)), that all primes (1 mod 4) equal the sum of two squares, and two basic theorems of Euclid and Euler about perfect numbers. The article also formally defines Euler's sum of divisors function Φ, proves that Φ is multiplicative and that Σk|n Φ(k) = n.},
author = {Marco Riccardi},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {123-128},
title = {The Perfect Number Theorem and Wilson's Theorem},
url = {http://eudml.org/doc/267018},
volume = {17},
year = {2009},
}

TY - JOUR
AU - Marco Riccardi
TI - The Perfect Number Theorem and Wilson's Theorem
JO - Formalized Mathematics
PY - 2009
VL - 17
IS - 2
SP - 123
EP - 128
AB - This article formalizes proofs of some elementary theorems of number theory (see [1, 26]): Wilson's theorem (that n is prime iff n > 1 and (n - 1)! ≅ -1 (mod n)), that all primes (1 mod 4) equal the sum of two squares, and two basic theorems of Euclid and Euler about perfect numbers. The article also formally defines Euler's sum of divisors function Φ, proves that Φ is multiplicative and that Σk|n Φ(k) = n.
LA - eng
UR - http://eudml.org/doc/267018
ER -

References

top
  1. [1] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Berlin Heidelberg New York, 2004. Zbl1098.00001
  2. [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  3. [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  4. [4] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990. 
  5. [5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  6. [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  7. [7] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991. 
  8. [8] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990. 
  9. [9] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. 
  10. [10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  11. [11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  12. [12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  13. [13] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  14. [14] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  15. [15] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990. 
  16. [16] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  17. [17] Yoshinori Fujisawa and Yasushi Fuwa. The Euler's function. Formalized Mathematics, 6(4):549-551, 1997. 
  18. [18] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998. 
  19. [19] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  20. [20] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328, 1990. 
  21. [21] Magdalena Jastrzebska and Adam Grabowski. On the properties of the Möbius function. Formalized Mathematics, 14(1):29-36, 2006, doi:10.2478/v10037-006-0005-0.[Crossref] 
  22. [22] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179-186, 2004. 
  23. [23] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992. 
  24. [24] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990. 
  25. [25] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990. 
  26. [26] W. J. LeVeque. Fundamentals of Number Theory. Dover Publication, New York, 1996. Zbl1141.11300
  27. [27] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993. 
  28. [28] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990. 
  29. [29] Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics, 12(1):49-58, 2004. 
  30. [30] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997. 
  31. [31] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001. 
  32. [32] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990. 
  33. [33] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990. 
  34. [34] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003. 
  35. [35] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990. 
  36. [36] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  37. [37] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990. 
  38. [38] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  39. [39] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  40. [40] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  41. [41] Hiroshi Yamazaki, Yasunari Shidama, and Yatsuka Nakamura. Bessel's inequality. Formalized Mathematics, 11(2):169-173, 2003. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.