# The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator

Annales UMCS, Mathematica (2014)

- Volume: 68, Issue: 1, page 1-10
- ISSN: 2083-7402

## Access Full Article

top## Abstract

top## How to cite

topOm P. Ahuja, and Halit Orhan. "The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator." Annales UMCS, Mathematica 68.1 (2014): 1-10. <http://eudml.org/doc/267078>.

@article{OmP2014,

abstract = {In the present investigation we solve Fekete-Szegö problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions},

author = {Om P. Ahuja, Halit Orhan},

journal = {Annales UMCS, Mathematica},

keywords = {Fekete-Szegö problem; Hadamard product; linear operator; strongly starlike functions; strongly convex functions; Fekete-Szegő problem; strongly star-like functions},

language = {eng},

number = {1},

pages = {1-10},

title = {The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator},

url = {http://eudml.org/doc/267078},

volume = {68},

year = {2014},

}

TY - JOUR

AU - Om P. Ahuja

AU - Halit Orhan

TI - The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator

JO - Annales UMCS, Mathematica

PY - 2014

VL - 68

IS - 1

SP - 1

EP - 10

AB - In the present investigation we solve Fekete-Szegö problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions

LA - eng

KW - Fekete-Szegö problem; Hadamard product; linear operator; strongly starlike functions; strongly convex functions; Fekete-Szegő problem; strongly star-like functions

UR - http://eudml.org/doc/267078

ER -

## References

top- [1] Abdel-Gawad, H. R., Thomas, D. K., Fekete-Szeg¨o problem for strongly close-toconvex function, Proc. Amer. Math. Soc. 114 (2) (1992), 345-349. Zbl0741.30008
- [2] Al-Oboudi, F. M., On univalent functions defined by a generalized S˘al˘agean operator, Int. J. Math. Math. Sci., no. 25-28 (2004), 1429-1436.
- [3] Brannan D. A., Kirwan, W. E., On some classes of bounded univalent functions, J. London Math. Soc. 2 (1) (1969), 431-443.[Crossref] Zbl0177.33403
- [4] Carlson, B. C., Shaffer, D. B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.[Crossref] Zbl0567.30009
- [5] C，a˘glar, M., Deniz, E., Orhan, H., Coefficient bounds for a subclass of starlike functions of complex order, Appl. Math. Comput. 218 (2011), 693-698.[WoS] Zbl1225.30006
- [6] Darus, M., Akbarally, A., Coefficient estimates for Ruscheweyh derivatives, Int. J. Math. Math. Sci. 36 (2004), 1937-1942.[Crossref] Zbl1070.30003
- [7] Deniz, E., Orhan, H., The Fekete-Szeg¨o problem for a generalized subclass of analytic functions, Kyungpook Math. J. 50 (2010), 37-47. Zbl1200.30010
- [8] Deniz, E., C，a˘glar, M., Orhan, H., The Fekete-Szeg¨o problem for a class of analytic functions defined by Dziok-Srivastava operator, Kodai Math. J. 35 (2012), 439-462. Zbl1276.30022
- [9] Dziok, J., Classes of functions defined by certain differential-integral operators, J. Comput. Appl. Math. 105 (1999), 245-255. Zbl0946.30007
- [10] Fekete, M., Szeg¨o, G., Eine Bermerkung uber ungerade schlichte funktionen, J. London Math. Soc. 8 (1933), 85-89. Zbl59.0347.04

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.