The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator

Om P. Ahuja; Halit Orhan

Annales UMCS, Mathematica (2014)

  • Volume: 68, Issue: 1, page 1-10
  • ISSN: 2083-7402

Abstract

top
In the present investigation we solve Fekete-Szegö problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions

How to cite

top

Om P. Ahuja, and Halit Orhan. "The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator." Annales UMCS, Mathematica 68.1 (2014): 1-10. <http://eudml.org/doc/267078>.

@article{OmP2014,
abstract = {In the present investigation we solve Fekete-Szegö problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions},
author = {Om P. Ahuja, Halit Orhan},
journal = {Annales UMCS, Mathematica},
keywords = {Fekete-Szegö problem; Hadamard product; linear operator; strongly starlike functions; strongly convex functions; Fekete-Szegő problem; strongly star-like functions},
language = {eng},
number = {1},
pages = {1-10},
title = {The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator},
url = {http://eudml.org/doc/267078},
volume = {68},
year = {2014},
}

TY - JOUR
AU - Om P. Ahuja
AU - Halit Orhan
TI - The Fekete–Szegö problem for a class of analytic functions defined by Carlson–Shaffer operator
JO - Annales UMCS, Mathematica
PY - 2014
VL - 68
IS - 1
SP - 1
EP - 10
AB - In the present investigation we solve Fekete-Szegö problem for the generalized linear differential operator. In particular, our theorems contain corresponding results for various subclasses of strongly starlike and strongly convex functions
LA - eng
KW - Fekete-Szegö problem; Hadamard product; linear operator; strongly starlike functions; strongly convex functions; Fekete-Szegő problem; strongly star-like functions
UR - http://eudml.org/doc/267078
ER -

References

top
  1. [1] Abdel-Gawad, H. R., Thomas, D. K., Fekete-Szeg¨o problem for strongly close-toconvex function, Proc. Amer. Math. Soc. 114 (2) (1992), 345-349. Zbl0741.30008
  2. [2] Al-Oboudi, F. M., On univalent functions defined by a generalized S˘al˘agean operator, Int. J. Math. Math. Sci., no. 25-28 (2004), 1429-1436. 
  3. [3] Brannan D. A., Kirwan, W. E., On some classes of bounded univalent functions, J. London Math. Soc. 2 (1) (1969), 431-443.[Crossref] Zbl0177.33403
  4. [4] Carlson, B. C., Shaffer, D. B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.[Crossref] Zbl0567.30009
  5. [5] C,a˘glar, M., Deniz, E., Orhan, H., Coefficient bounds for a subclass of starlike functions of complex order, Appl. Math. Comput. 218 (2011), 693-698.[WoS] Zbl1225.30006
  6. [6] Darus, M., Akbarally, A., Coefficient estimates for Ruscheweyh derivatives, Int. J. Math. Math. Sci. 36 (2004), 1937-1942.[Crossref] Zbl1070.30003
  7. [7] Deniz, E., Orhan, H., The Fekete-Szeg¨o problem for a generalized subclass of analytic functions, Kyungpook Math. J. 50 (2010), 37-47. Zbl1200.30010
  8. [8] Deniz, E., C,a˘glar, M., Orhan, H., The Fekete-Szeg¨o problem for a class of analytic functions defined by Dziok-Srivastava operator, Kodai Math. J. 35 (2012), 439-462. Zbl1276.30022
  9. [9] Dziok, J., Classes of functions defined by certain differential-integral operators, J. Comput. Appl. Math. 105 (1999), 245-255. Zbl0946.30007
  10. [10] Fekete, M., Szeg¨o, G., Eine Bermerkung uber ungerade schlichte funktionen, J. London Math. Soc. 8 (1933), 85-89. Zbl59.0347.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.