On Rough Subgroup of a Group

Xiquan Liang; Dailu Li

Formalized Mathematics (2009)

  • Volume: 17, Issue: 3, page 213-217
  • ISSN: 1426-2630

Abstract

top
This article describes a rough subgroup with respect to a normal subgroup of a group, and some properties of the lower and the upper approximations in a group.

How to cite

top

Xiquan Liang, and Dailu Li. "On Rough Subgroup of a Group." Formalized Mathematics 17.3 (2009): 213-217. <http://eudml.org/doc/267120>.

@article{XiquanLiang2009,
abstract = {This article describes a rough subgroup with respect to a normal subgroup of a group, and some properties of the lower and the upper approximations in a group.},
author = {Xiquan Liang, Dailu Li},
journal = {Formalized Mathematics},
keywords = {finite -groups},
language = {eng},
number = {3},
pages = {213-217},
title = {On Rough Subgroup of a Group},
url = {http://eudml.org/doc/267120},
volume = {17},
year = {2009},
}

TY - JOUR
AU - Xiquan Liang
AU - Dailu Li
TI - On Rough Subgroup of a Group
JO - Formalized Mathematics
PY - 2009
VL - 17
IS - 3
SP - 213
EP - 217
AB - This article describes a rough subgroup with respect to a normal subgroup of a group, and some properties of the lower and the upper approximations in a group.
LA - eng
KW - finite -groups
UR - http://eudml.org/doc/267120
ER -

References

top
  1. [1] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990. 
  2. [2] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990. 
  3. [3] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990. 
  4. [4] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991. 
  5. [5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.