Fractional Maximal Functions in Metric Measure Spaces

Toni Heikkinen; Juha Lehrbäck; Juho Nuutinen; Heli Tuominen

Analysis and Geometry in Metric Spaces (2013)

  • Volume: 1, page 147-162
  • ISSN: 2299-3274

Abstract

top
We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to Hölder continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous.

How to cite

top

Toni Heikkinen, et al. "Fractional Maximal Functions in Metric Measure Spaces." Analysis and Geometry in Metric Spaces 1 (2013): 147-162. <http://eudml.org/doc/267136>.

@article{ToniHeikkinen2013,
abstract = {We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to Hölder continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous.},
author = {Toni Heikkinen, Juha Lehrbäck, Juho Nuutinen, Heli Tuominen},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {Fractional maximal function; fractional Sobolev space; Campanato space; metric measure space; fractional maximal function},
language = {eng},
pages = {147-162},
title = {Fractional Maximal Functions in Metric Measure Spaces},
url = {http://eudml.org/doc/267136},
volume = {1},
year = {2013},
}

TY - JOUR
AU - Toni Heikkinen
AU - Juha Lehrbäck
AU - Juho Nuutinen
AU - Heli Tuominen
TI - Fractional Maximal Functions in Metric Measure Spaces
JO - Analysis and Geometry in Metric Spaces
PY - 2013
VL - 1
SP - 147
EP - 162
AB - We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to Hölder continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous.
LA - eng
KW - Fractional maximal function; fractional Sobolev space; Campanato space; metric measure space; fractional maximal function
UR - http://eudml.org/doc/267136
ER -

References

top
  1. [1] D. R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765-778. Zbl0336.46038
  2. [2] D. R. Adams, Lecture Notes on Lp-Potential Theory, Dept. of Math., University of Umeå, 1981. 
  3. [3] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, Berlin Heidelberg, 1996. 
  4. [4] S. M. Buckley, Is the maximal function of a Lipschitz function continuous?, Ann. Acad. Sci. Fenn. Math. 24 (1999), 519-528. 
  5. [5] S. M. Buckley, Inequalities of John-Nirenberg type in doubling spaces, J. Anal. Math 79 (1999), 215-240.[Crossref] Zbl0990.46019
  6. [6] D. Edmunds, V. Kokilashvili, and A. Meskhi, Bounded and Compact Integral Operators, Mathematics and its Applications, vol. 543, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002. Zbl1023.42001
  7. [7] J. García-Cuerva and J. L.Rubio De Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, 116. Notas de Matemática, 104. North-Holland Publishing Co., Amsterdam, 1985. 
  8. [8] A. E. Gatto and S. Vági, Fractional integrals on spaces of homogeneous type, Analysis and Partial Differential Equations, C. Sadosky (ed.), Dekker, 1990, 171-216. Zbl0695.43006
  9. [9] A. E. Gatto, C. Segovia, and S. Vági, On fractional differentiation and integration on spaces of homogeneous type, Rev. Mat. Iberoamericana 12 (1996), no. 1, 111-145. Zbl0921.43005
  10. [10] I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight Theory for Integral Transforms on Spaces of Homogeneous Type, Addison Wesley Longman Limited, 1998. Zbl0955.42001
  11. [11] A. Gogatishvili, Two-weight mixed inequalities in Orlicz classes for fractional maximal functions defined on homogeneous type spaces, Proc. A. Razmadze Math. Inst. 112 (1997), 23-56. Zbl0881.42016
  12. [12] A.Gogatishvili, Fractional maximal functions in weighted Banach function spaces, Real Anal. Exchange 25 (1999/00), no. 1, 291-316. Zbl1015.42014
  13. [13] O. Gorosito, G. Pradolini, and O. Salinas, Boundedness of the fractional maximal operator on variable exponent Lebesgue spaces: a short proof, Rev. Un. Mat. Argentina 53 (2012), no. 1, 25-27. Zbl1256.42030
  14. [14] P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), no.4, 403-415. Zbl0859.46022
  15. [15] P. Hajłasz, Sobolev spaces on metric-measure spaces, In: Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), pp. 173-218, Contemp. Math. 338, Amer. Math. Soc. Providence, RI, 2003. Zbl1048.46033
  16. [16] P. Hajłasz and P.Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688 Zbl0954.46022
  17. [17] T. Heikkinen, J. Kinnunen, J. Nuutinen, and H. Tuominen, Mapping properties of the discrete fractional maximal operator in metric measure spaces, to appear in Kyoto J. Math. Zbl1280.42012
  18. [18] T. Heikkinen and H. Tuominen, Smoothing properties of the discrete fractional maximal operator on Besov and Triebel-Lizorkin spaces, http://arxiv.org/abs/1301.4819 Zbl1295.42004
  19. [19] J. Kinnunen and E. Saksman, Regularity of the fractional maximal function, Bull. London Math. Soc. 35 (2003), no. 4, 529-535. Zbl1021.42009
  20. [20] N. Kruglyak and E. A.Kuznetsov, Sharp integral estimates for the fractional maximal function and interpolation, Ark. Mat. 44 (2006), no. 2, 309-326. Zbl1156.42308
  21. [21] M. T. Lacey, K. Moen, C. Pérez, and R. H. Torres, Sharp weighted bounds for fractional integral operators, J. Funct. Anal. 259 (2010), no. 5, 1073-1097.[WoS] Zbl1196.42014
  22. [22] P. MacManus, Poincaré inequalities and Sobolev spaces, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), Publ. Mat. 2002, 181-197. 
  23. [23] P. MacManus, The maximal function and Sobolev spaces, unpublished preprint 
  24. [24] B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261-274. Zbl0289.26010
  25. [25] E. Nakai, The Campanato, Morrey and Hölder spaces on spaces of homogeneous type, Studia Math. 176 (2006), no. 1, 1-19. Zbl1121.46031
  26. [26] C. Pérez and R. Wheeden, Potential operators, maximal functions, and generalizations of A1, Potential Anal. 19 (2003), no. 1, 1-33. Zbl1027.42015
  27. [27] E. Routin, Distribution of points and Hardy type inequalities in spaces of homogeneous type, preprint (2012), http://arxiv.org/abs/1201.5449 Zbl1305.42018
  28. [28] E. T. Sawyer, R. L. Wheeden, and S. Zhao, Weighted norm inequalities for operators of potential type and fractional maximal functions, Potential Anal. 5 (1996), no. 6, 523-580. Zbl0873.42012
  29. [29] R. L. Wheeden, A characterization of some weighted norm inequalities for the fractional maximal function, Studia Math. 107 (1993), 257-272. Zbl0809.42009
  30. [30] D. Yang, New characterizations of Hajłasz-Sobolev spaces on metric spaces, Sci. China Ser. A 46 (2003), no. 5, 675-689.[Crossref] Zbl1092.46026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.