Metric Characterizations of Superreflexivity in Terms of Word Hyperbolic Groups and Finite Graphs
Analysis and Geometry in Metric Spaces (2014)
- Volume: 2, Issue: 1, page 154-168, electronic only
- ISSN: 2299-3274
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. N. Arzhantseva, On quasiconvex subgroups of word hyperbolic groups, Geom. Dedicata, 87 (2001), no. 1-3, 191-208. Zbl0994.20036
- [2] F. Baudier, Metrical characterization of super-reflexivity and linear type of Banach spaces, Archiv Math., 89 (2007), no. 5, 419-429.[WoS] Zbl1142.46007
- [3] B. Beauzamy, Introduction to Banach spaces and their geometry. North-Holland Mathematics Studies, 68. Notas de Matemática [Mathematical Notes], 86. North-Holland Publishing Co., Amsterdam-New York, 1982. Second Edition: 1985.
- [4] I. Benjamini, O. Schramm, Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant, Geom. Funct. Anal. 7 (1997), no. 3, 403-419. Zbl0882.05052
- [5] Y. Benyamini, J. Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1. AmericanMathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI, 2000. Zbl0946.46002
- [6] J. Bourgain, The metrical interpretation of superreflexivity in Banach spaces, Israel J. Math., 56 (1986), no. 2, 222-230. Zbl0643.46013
- [7] M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319. Springer-Verlag, Berlin, 1999.
- [8] B. Brinkman, A. Karagiozova, J. R. Lee, Vertex cuts, random walks, and dimension reduction in series-parallel graphs, in: STOC’07-Proceedings of the 39th Annual ACM Symposium on Theory of Computing, 621-630, ACM, New York, 2007. Zbl1232.68163
- [9] S. Buyalo, A. Dranishnikov, V. Schroeder, Embedding of hyperbolic groups into products of binary trees, Invent. Math., 169 (2007), no. 1, 153-192. Zbl1157.57003
- [10] S. Buyalo, V. Schroeder, Elements of asymptotic geometry, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007. Zbl1125.53036
- [11] F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, arXiv:1111.7048v3.
- [12] R. Deville, G. Godefroy, V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scienti_c & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. Zbl0782.46019
- [13] M. Deza, M. Laurent, Geometry of cuts and metrics. Algorithms and Combinatorics, 15. Springer-Verlag, Berlin, 1997. Zbl0885.52001
- [14] D. van Dulst, Reflexive and superreflexive Banach spaces. Mathematical Centre Tracts, 102. Mathematisch Centrum, Amsterdam, 1978. Zbl0412.46006
- [15] J. Elton, E. Odell, The unit ball of every in_nite-dimensional normed linear space contains a (1 + ")-separated sequence. Colloq. Math. 44 (1981), no. 1, 105-109. Zbl0493.46014
- [16] P. Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math, 13 (1972), 281-288.
- [17] D. Eppstein, Parallel recognition of series-parallel graphs. Inform. and Comput. 98 (1992), no. 1, 41-55. Zbl0754.68056
- [18] M. Gromov, Hyperbolic groups, in: Essays in group theory, 75-263,Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987.; Russian translation: Institute of Computer Science, Izhevsk, 2002.
- [19] A. Gupta, I. Newman, Y. Rabinovich, A. Sinclair, Cuts, trees and `1-embeddings of graphs, Combinatorica, 24 (2004) 233-269; Conference version in: 40th Annual IEEE Symposium on Foundations of Computer Science, 1999, pp. 399-408. Zbl1056.05040
- [20] R. C. James, Uniformly non-square Banach spaces. Ann. of Math. (2) 80 (1964), 542-550. Zbl0132.08902
- [21] R. C. James, Some self-dual properties of normed linear spaces, in: Symposiumon In_nite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967), pp. 159-175. Ann. ofMath. Studies, No. 69, Princeton Univ. Press, Princeton, N. J., 1972.
- [22] R. C. James, Super-reflexive Banach spaces, Canad. J. Math., 24 (1972), 896-904. Zbl0222.46009
- [23] W. B. Johnson, G. Schechtman, Diamond graphs and super-reflexivity, J. Topol. Anal., 1 (2009), no. 2, 177-189.[WoS][Crossref] Zbl1183.46022
- [24] B. Kloeckner, Yet another short proof of the Bourgain’s distortion estimate for embedding of trees into uniformly convex Banach spaces, Israel J. Math., to appear, DOI: 10.1007/s11856-014-0024-4, http://www-fourier.ujfgrenoble.fr/_bkloeckn/recherche.html[Crossref] Zbl1314.46028
- [25] C. A. Kottman, Subsets of the unit ball that are separated by more than one. Studia Math. 53 (1975), no. 1, 15-27. Zbl0266.46014
- [26] M. Mendel, A. Naor, Markov convexity and local rigidity of distorted metrics, J. Eur. Math. Soc. (JEMS), 15 (2013), no. 1, 287-337; Conference version: Computational geometry (SCG’08), 49-58, ACM, New York, 2008.[Crossref] Zbl1266.46016
- [27] P.W. Nowak, G. Yu, Large scale geometry. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2012. Zbl1264.53051
- [28] M. I. Ostrovskii, Embeddability of locally _nite metric spaces into Banach spaces is _nitely determined, Proc. Amer. Math. Soc., 140 (2012), 2721-2730. [29] M. I. Ostrovskii, Metric Embeddings: Bilipschitz and Coarse Embeddings into Banach Spaces, de Gruyter Studies in Mathematics, 49. Walter de Gruyter & Co., Berlin, 2013. Zbl1276.46013
- [30] M. I. Ostrovskii, Test-space characterizations of some classes of Banach spaces, in: Algebraic Methods in Functional Analysis, The Victor Shulman Anniversary Volume, I. G. Todorov, L. Turowska (Eds.), Operator Theory: Advances and Applications, Vol. 233, Birkhäuser, Basel, 2013, pp. 103-126.
- [31] G. Pisier, Martingales in Banach spaces (in connection with type and cotype), Lecture notes of a course given at l’Institut Henri Poincaré, February 2-8, 2011, 242 pp; see the web site: http://perso-math.univ-mlv.fr/users/banach/Winterschool2011/
- [32] Y. Rabinovich, R. Raz, Lower bounds on the distortion of embedding _nite metric spaces in graphs, Discrete Comput. Geom., 19 (1998), no. 1, 79-94. Zbl0890.05021
- [33] J. J. Schä_er, K. Sundaresan, Reflexivity and the girth of spheres. Math. Ann. 184 (1969/1970) 163-168.
- [34] A. Sisto, Quasi-convexity of hyperbolically embedded subgroups, Math. Z. to appear, arXiv: 1310.7753.