Modular Integer Arithmetic
Formalized Mathematics (2008)
- Volume: 16, Issue: 3, page 247-252
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [6] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
- [7] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005.
- [8] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
- [9] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [11] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 1999. Zbl0936.11069