Multiplication of Polynomials using Discrete Fourier Transformation

Krzysztof Treyderowski; Christoph Schwarzweller

Formalized Mathematics (2006)

  • Volume: 14, Issue: 4, page 121-128
  • ISSN: 1426-2630

Abstract

top
In this article we define the Discrete Fourier Transformation for univariate polynomials and show that multiplication of polynomials can be carried out by two Fourier Transformations with a vector multiplication in-between. Our proof follows the standard one found in the literature and uses Vandermonde matrices, see e.g. [27].

How to cite

top

Krzysztof Treyderowski, and Christoph Schwarzweller. "Multiplication of Polynomials using Discrete Fourier Transformation." Formalized Mathematics 14.4 (2006): 121-128. <http://eudml.org/doc/267150>.

@article{KrzysztofTreyderowski2006,
abstract = {In this article we define the Discrete Fourier Transformation for univariate polynomials and show that multiplication of polynomials can be carried out by two Fourier Transformations with a vector multiplication in-between. Our proof follows the standard one found in the literature and uses Vandermonde matrices, see e.g. [27].},
author = {Krzysztof Treyderowski, Christoph Schwarzweller},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {121-128},
title = {Multiplication of Polynomials using Discrete Fourier Transformation},
url = {http://eudml.org/doc/267150},
volume = {14},
year = {2006},
}

TY - JOUR
AU - Krzysztof Treyderowski
AU - Christoph Schwarzweller
TI - Multiplication of Polynomials using Discrete Fourier Transformation
JO - Formalized Mathematics
PY - 2006
VL - 14
IS - 4
SP - 121
EP - 128
AB - In this article we define the Discrete Fourier Transformation for univariate polynomials and show that multiplication of polynomials can be carried out by two Fourier Transformations with a vector multiplication in-between. Our proof follows the standard one found in the literature and uses Vandermonde matrices, see e.g. [27].
LA - eng
UR - http://eudml.org/doc/267150
ER -

References

top
  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  2. [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  3. [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. 
  4. [4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  5. [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  6. [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  7. [7] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991. 
  8. [8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  9. [9] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001. 
  10. [10] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001. 
  11. [11] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001. 
  12. [12] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991. 
  13. [13] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990. 
  14. [14] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991. 
  15. [15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993. 
  16. [16] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991. 
  17. [17] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991. 
  18. [18] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001. 
  19. [19] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics. 
  20. [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990. 
  21. [21] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990. 
  22. [22] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  23. [23] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990. 
  24. [24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990. 
  25. [25] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  26. [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  27. [27] J. von zur Gathen and J. Gerhard Modern Computer Algebra. Cambridge University Press, 1999. 
  28. [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  29. [29] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.