Multiplication of Polynomials using Discrete Fourier Transformation
Krzysztof Treyderowski; Christoph Schwarzweller
Formalized Mathematics (2006)
- Volume: 14, Issue: 4, page 121-128
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topKrzysztof Treyderowski, and Christoph Schwarzweller. "Multiplication of Polynomials using Discrete Fourier Transformation." Formalized Mathematics 14.4 (2006): 121-128. <http://eudml.org/doc/267150>.
@article{KrzysztofTreyderowski2006,
abstract = {In this article we define the Discrete Fourier Transformation for univariate polynomials and show that multiplication of polynomials can be carried out by two Fourier Transformations with a vector multiplication in-between. Our proof follows the standard one found in the literature and uses Vandermonde matrices, see e.g. [27].},
author = {Krzysztof Treyderowski, Christoph Schwarzweller},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {121-128},
title = {Multiplication of Polynomials using Discrete Fourier Transformation},
url = {http://eudml.org/doc/267150},
volume = {14},
year = {2006},
}
TY - JOUR
AU - Krzysztof Treyderowski
AU - Christoph Schwarzweller
TI - Multiplication of Polynomials using Discrete Fourier Transformation
JO - Formalized Mathematics
PY - 2006
VL - 14
IS - 4
SP - 121
EP - 128
AB - In this article we define the Discrete Fourier Transformation for univariate polynomials and show that multiplication of polynomials can be carried out by two Fourier Transformations with a vector multiplication in-between. Our proof follows the standard one found in the literature and uses Vandermonde matrices, see e.g. [27].
LA - eng
UR - http://eudml.org/doc/267150
ER -
References
top- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [7] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
- [8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- [9] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.
- [10] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001.
- [11] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
- [12] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
- [13] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990.
- [14] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
- [15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
- [16] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [17] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.
- [18] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.
- [19] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
- [21] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
- [22] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [23] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
- [25] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
- [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [27] J. von zur Gathen and J. Gerhard Modern Computer Algebra. Cambridge University Press, 1999.
- [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [29] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.