Complete Non-Orientable Minimal Surfaces in ℝ 3 and Asymptotic Behavior

Antonio Alarcón; Francisco J. López

Analysis and Geometry in Metric Spaces (2014)

  • Volume: 2, Issue: 1, page 214-234, electronic only
  • ISSN: 2299-3274

Abstract

top
In this paperwe give new existence results for complete non-orientable minimal surfaces in ℝ3 with prescribed topology and asymptotic behavior

How to cite

top

Antonio Alarcón, and Francisco J. López. " Complete Non-Orientable Minimal Surfaces in ℝ 3 and Asymptotic Behavior ." Analysis and Geometry in Metric Spaces 2.1 (2014): 214-234, electronic only. <http://eudml.org/doc/267164>.

@article{AntonioAlarcón2014,
abstract = {In this paperwe give new existence results for complete non-orientable minimal surfaces in ℝ3 with prescribed topology and asymptotic behavior},
author = {Antonio Alarcón, Francisco J. López},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {Complete minimal surfaces; non-orientable surfaces; complete minimal surfaces},
language = {eng},
number = {1},
pages = {214-234, electronic only},
title = { Complete Non-Orientable Minimal Surfaces in ℝ 3 and Asymptotic Behavior },
url = {http://eudml.org/doc/267164},
volume = {2},
year = {2014},
}

TY - JOUR
AU - Antonio Alarcón
AU - Francisco J. López
TI - Complete Non-Orientable Minimal Surfaces in ℝ 3 and Asymptotic Behavior
JO - Analysis and Geometry in Metric Spaces
PY - 2014
VL - 2
IS - 1
SP - 214
EP - 234, electronic only
AB - In this paperwe give new existence results for complete non-orientable minimal surfaces in ℝ3 with prescribed topology and asymptotic behavior
LA - eng
KW - Complete minimal surfaces; non-orientable surfaces; complete minimal surfaces
UR - http://eudml.org/doc/267164
ER -

References

top
  1. [1] A. Alarcón, Compact complete minimal immersions in R3, Trans. Amer. Math. Soc., 362 (2010), pp. 4063-4076. Zbl1196.53006
  2. [2] A. Alarcón, Compact complete proper minimal immersions in strictly convex bounded regular domains of R3, AIP Conference Proceedings, 1260 (2010), pp. 105-111. 
  3. [3] A. Alarcón and F. J. López, Approximation theory for non-orientable minimal surfaces and applications. Preprint 2013, arXiv:1307.2399 (to appear in Geom. Topol.). Zbl1314.49026
  4. [4] A. Alarcón and F. J. López, Properness of associated minimal surfaces. Trans. Amer. Math. Soc., in press. Zbl1298.53011
  5. [5] A. Alarcón and F. J. López, Minimal surfaces in R3 properly projecting into R2, J. Di_erential Geom., 90 (2012), pp. 351-381. Zbl1252.53005
  6. [6] A. Alarcón and F. J. López, Compact complete null curves in Complex 3-space, Israel J. Math., 195 (2013), pp. 97-122. Zbl1288.53050
  7. [7] A. Alarcón and F. J. López, Null curves in C3 and Calabi-Yau conjectures, Math. Ann., 355 (2013), pp. 429-455.[WoS] Zbl1269.53061
  8. [8] A. Alarcón and N. Nadirashvili, Limit sets for complete minimal immersions, Math. Z., 258 (2008), pp. 107-113.[WoS] Zbl1167.53007
  9. [9] L. Ferrer, F. Martín, and W. H. Meeks, III, Existence of proper minimal surfaces of arbitrary topological type, Adv. Math., 231 (2012), pp. 378-413.[WoS] Zbl1246.53006
  10. [10] F. Martín and N. Nadirashvili, A Jordan curve spanned by a complete minimal surface, Arch. Ration. Mech. Anal., 184 (2007), pp. 285-301.[WoS] Zbl1114.49039
  11. [11] W. H. Meeks, III, The classi_cation of complete minimal surfaces in R3 with total curvature greater than −8_, Duke Math. J., 48 (1981), pp. 523-535. 
  12. [12] W. H. Meeks, III and S. T. Yau, The classical Plateau problemand the topology of three-dimensionalmanifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma, Topology, 21 (1982), pp. 409-442. Zbl0489.57002
  13. [13] H. Minkowski, Volumen und Oberfläche, Math. Ann., 57 (1903), pp. 447-495. 
  14. [14] N. Nadirashvili, Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal surfaces, Invent. Math., 126 (1996), pp. 457-465. Zbl0881.53053
  15. [15] R. Schoen and S. T. Yau, Lectures on harmonic maps, Conference Proceedings and Lecture Notes in Geometry and Topology, II, International Press, Cambridge, MA, 1997. Zbl0886.53004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.