A Model of Mizar Concepts - Unification

Grzegorz Bancerek

Formalized Mathematics (2010)

  • Volume: 18, Issue: 1, page 65-75
  • ISSN: 1426-2630

Abstract

top
The aim of this paper is to develop a formal theory of Mizar linguistic concepts following the ideas from [6] and [7]. The theory presented is an abstraction from the existing implementation of the Mizar system and is devoted to the formalization of Mizar expressions. The concepts formalized here are: standarized constructor signature, arity-rich signatures, and the unification of Mizar expressions.

How to cite

top

Grzegorz Bancerek. "A Model of Mizar Concepts - Unification." Formalized Mathematics 18.1 (2010): 65-75. <http://eudml.org/doc/267171>.

@article{GrzegorzBancerek2010,
abstract = {The aim of this paper is to develop a formal theory of Mizar linguistic concepts following the ideas from [6] and [7]. The theory presented is an abstraction from the existing implementation of the Mizar system and is devoted to the formalization of Mizar expressions. The concepts formalized here are: standarized constructor signature, arity-rich signatures, and the unification of Mizar expressions.},
author = {Grzegorz Bancerek},
journal = {Formalized Mathematics},
keywords = {MIZAR system},
language = {eng},
number = {1},
pages = {65-75},
title = {A Model of Mizar Concepts - Unification},
url = {http://eudml.org/doc/267171},
volume = {18},
year = {2010},
}

TY - JOUR
AU - Grzegorz Bancerek
TI - A Model of Mizar Concepts - Unification
JO - Formalized Mathematics
PY - 2010
VL - 18
IS - 1
SP - 65
EP - 75
AB - The aim of this paper is to develop a formal theory of Mizar linguistic concepts following the ideas from [6] and [7]. The theory presented is an abstraction from the existing implementation of the Mizar system and is devoted to the formalization of Mizar expressions. The concepts formalized here are: standarized constructor signature, arity-rich signatures, and the unification of Mizar expressions.
LA - eng
KW - MIZAR system
UR - http://eudml.org/doc/267171
ER -

References

top
  1. [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990. 
  2. [2] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547-552, 1991. 
  3. [3] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993. 
  4. [4] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185-190, 1996. 
  5. [5] Grzegorz Bancerek. Institution of many sorted algebras. Part I: Signature reduct of an algebra. Formalized Mathematics, 6(2):279-287, 1997. 
  6. [6] Grzegorz Bancerek. On the structure of Mizar types. In Herman Geuvers and Fairouz Kamareddine, editors, Electronic Notes in Theoretical Computer Science, volume 85. Elsevier, 2003. Zbl1264.03040
  7. [7] Grzegorz Bancerek. Towards the construction of a model of Mizar concepts. Formalized Mathematics, 16(2):207-230, 2008, doi:10.2478/v10037-008-0027-x.[Crossref] 
  8. [8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  9. [9] Grzegorz Bancerek and Artur Korniłowicz. Yet another construction of free algebra. Formalized Mathematics, 9(4):779-785, 2001. 
  10. [10] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. Formalized Mathematics, 5(3):367-380, 1996. 
  11. [11] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  12. [12] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  13. [13] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  14. [14] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  15. [15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  16. [16] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):67-74, 1996. 
  17. [17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990. 
  18. [18] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990. 
  19. [19] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996. 
  20. [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  21. [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  22. [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.