Cayley-Hamilton theorem for left eigenvalues of 3 × 3 quaternionic matrices

E. Macías-Virgós; M.J. Pereira-Sáez

Special Matrices (2014)

  • Volume: 2, Issue: 1, page 11-18, electronic only
  • ISSN: 2300-7451

Abstract

top
We prove that any quaternionic matrix of order n ≤3 admits a characteristic function, whose roots are the left eigenvalues, that satisfes Cayley-Hamilton theorem.

How to cite

top

E. Macías-Virgós, and M.J. Pereira-Sáez. "Cayley-Hamilton theorem for left eigenvalues of 3 × 3 quaternionic matrices." Special Matrices 2.1 (2014): 11-18, electronic only. <http://eudml.org/doc/267239>.

@article{E2014,
abstract = {We prove that any quaternionic matrix of order n ≤3 admits a characteristic function, whose roots are the left eigenvalues, that satisfes Cayley-Hamilton theorem.},
author = {E. Macías-Virgós, M.J. Pereira-Sáez},
journal = {Special Matrices},
keywords = {Quaternionic matrix; left eigenvalue; characteristic function; Cayley-Hamilton theorem; quaternionic matrix},
language = {eng},
number = {1},
pages = {11-18, electronic only},
title = {Cayley-Hamilton theorem for left eigenvalues of 3 × 3 quaternionic matrices},
url = {http://eudml.org/doc/267239},
volume = {2},
year = {2014},
}

TY - JOUR
AU - E. Macías-Virgós
AU - M.J. Pereira-Sáez
TI - Cayley-Hamilton theorem for left eigenvalues of 3 × 3 quaternionic matrices
JO - Special Matrices
PY - 2014
VL - 2
IS - 1
SP - 11
EP - 18, electronic only
AB - We prove that any quaternionic matrix of order n ≤3 admits a characteristic function, whose roots are the left eigenvalues, that satisfes Cayley-Hamilton theorem.
LA - eng
KW - Quaternionic matrix; left eigenvalue; characteristic function; Cayley-Hamilton theorem; quaternionic matrix
UR - http://eudml.org/doc/267239
ER -

References

top
  1. [1] Aslaksen, H. Quaternionic determinants. Math. Intell. 18, No. 3, 57-65 (1996). Zbl0881.15007
  2. [2] Cohen, N.; De Leo, S. The quaternionic determinant. Electron. J. Linear Algebra 7, 100-111 (2000). Zbl0977.15004
  3. [3] Gelfand, I.M.; Krob, D.; Lascoux, A.; Leclerc, B.; Retakh, V.; Thibon, J.-Y. Noncommutative symmetric functions. Adv. Math., 112, No. 2, 218-348 (1995).[Crossref][WoS] Zbl0831.05063
  4. [4] Gelfand, I.; Gelfand, S.; Retakh, V.; Lee Wilson R. Quasideterminants. Adv. Math. 193, No. 1, 56-141 (2005). Zbl1079.15007
  5. [5] Huang, L. On two questions about quaternion matrices. Linear Algebra Appl. 318, No. 1-3, 79-86 (2000). Zbl0965.15016
  6. [6] Macías-Virgós, E.; Pereira-Sáez, M.J. A topological approach to left eigenvalues of quaternionic matrices, Linear Multilinear Algebra 62, No. 2, 139-158 (2014).[WoS] Zbl1290.15010
  7. [7] Wood, R.M.W. Quaternionic eigenvalues. Bull. Lond. Math. Soc. 17, 137-138 (1985). Zbl0537.15011
  8. [8] Zhang, F. Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21-57 (1997). Zbl0873.15008
  9. [9] Zhang, F. Geršgorin type theorems for quaternionic matrices. Linear Algebra Appl. 424, No. 1, 139-153 (2007). [WoS] Zbl1117.15017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.