# Kolmogorov's Zero-One Law

Formalized Mathematics (2009)

- Volume: 17, Issue: 2, page 73-77
- ISSN: 1426-2630

## Access Full Article

top## Abstract

top## How to cite

topAgnes Doll. "Kolmogorov's Zero-One Law." Formalized Mathematics 17.2 (2009): 73-77. <http://eudml.org/doc/267273>.

@article{AgnesDoll2009,

abstract = {This article presents the proof of Kolmogorov's zero-one law in probability theory. The independence of a family of σ-fields is defined and basic theorems on it are given.},

author = {Agnes Doll},

journal = {Formalized Mathematics},

language = {eng},

number = {2},

pages = {73-77},

title = {Kolmogorov's Zero-One Law},

url = {http://eudml.org/doc/267273},

volume = {17},

year = {2009},

}

TY - JOUR

AU - Agnes Doll

TI - Kolmogorov's Zero-One Law

JO - Formalized Mathematics

PY - 2009

VL - 17

IS - 2

SP - 73

EP - 77

AB - This article presents the proof of Kolmogorov's zero-one law in probability theory. The independence of a family of σ-fields is defined and basic theorems on it are given.

LA - eng

UR - http://eudml.org/doc/267273

ER -

## References

top- [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
- [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [12] Franz Merkl. Dynkin's lemma in measure theory. Formalized Mathematics, 9(3):591-595, 2001.
- [13] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
- [14] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
- [15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- [16] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
- [17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [18] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
- [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.