Quantum graph spectra of a graphyne structure

Ngoc T. Do; Peter Kuchment

Nanoscale Systems: Mathematical Modeling, Theory and Applications (2013)

  • Volume: 2, page 107-123
  • ISSN: 2299-3290

Abstract

top
We study the dispersion relations and spectra of invariant Schrödinger operators on a graphyne structure (lithographite). In particular, description of different parts of the spectrum, band-gap structure, and Dirac points are provided.

How to cite

top

Ngoc T. Do, and Peter Kuchment. "Quantum graph spectra of a graphyne structure." Nanoscale Systems: Mathematical Modeling, Theory and Applications 2 (2013): 107-123. <http://eudml.org/doc/267301>.

@article{NgocT2013,
abstract = {We study the dispersion relations and spectra of invariant Schrödinger operators on a graphyne structure (lithographite). In particular, description of different parts of the spectrum, band-gap structure, and Dirac points are provided.},
author = {Ngoc T. Do, Peter Kuchment},
journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications},
keywords = {graphyne; graphene; spectrum; Floquet-Bloch theory; dispersion relation; Dirac point; Hill operator},
language = {eng},
pages = {107-123},
title = {Quantum graph spectra of a graphyne structure},
url = {http://eudml.org/doc/267301},
volume = {2},
year = {2013},
}

TY - JOUR
AU - Ngoc T. Do
AU - Peter Kuchment
TI - Quantum graph spectra of a graphyne structure
JO - Nanoscale Systems: Mathematical Modeling, Theory and Applications
PY - 2013
VL - 2
SP - 107
EP - 123
AB - We study the dispersion relations and spectra of invariant Schrödinger operators on a graphyne structure (lithographite). In particular, description of different parts of the spectrum, band-gap structure, and Dirac points are provided.
LA - eng
KW - graphyne; graphene; spectrum; Floquet-Bloch theory; dispersion relation; Dirac point; Hill operator
UR - http://eudml.org/doc/267301
ER -

References

top
  1. C. Amovilli, F. Leys, N. March, Electronic Energy Spectrum of Two-Dimensional Solids and a Chain of C Atoms from a Quantum Network Model. J. Math. Chem. 36(2), 93–112 (2004) [Crossref] Zbl1052.81689
  2. D. Bardhan, Novel New Material Graphyne Can Be A Serious Competitor To Graphene. http://techiebuzz. com/science/graphyne.html (2012) 
  3. G. Berkolaiko, P. Kuchment, Introduction to quantum graphs AMS, Providence, RI (2012) Zbl1317.81127
  4. G. Borg, Eine Umkehrung der Sturm-Liouvillischen Eigenwertaufgabe, Acta Math. 78, 1–96(1946) Zbl0063.00523
  5. M. J. Bucknum, E. A. Castro, The squarographites: A lesson in the chemical topology of tessellations in 2- and 3-dimensions. Solid State Sciences 10, 1245–1251 (2008) [WoS] 
  6. M.S.P. Eastham, The Spectral Theory of Periodic Differential Equations Edinburgh-London: Scottish Acad. Press Ltd. (1973) Zbl0287.34016
  7. A. Enyanshin, A. Ivanovskii, Graphene Alloptropes: Stability, Structural and Electronic Properties from DF-TB Calculations. Phys. Status Solidi (b) 248, 1879–1883 (2011) 
  8. C.L. Fefferman, M.I. Weinstein, Honeycomb latice potentials and Dirac points J. Amer. Math. Soc. 25, 1169–1220 (2012) [Crossref] Zbl1316.35214
  9. C.L. Fefferman, M.I. Weinstein, Waves in Honeycomb Structures http://arxiv.org/pdf/1212.6684.pdf 
  10. A. Geim, Nobel lecture: Random walk to graphene Rev. Mod. Phys. 83, 851–862 (2011) [WoS] 
  11. E. Korotyaev, I. Lobanov, Schrödinger operators on zigzag graphs. Ann. Henri Poincaré 8(6), 1151–1176 (2007) Zbl05207472
  12. E. Korotyaev, I. Lobanov, Zigzag periodic nanotube in magnetic field. http://arxiv.org/list/math.SP/0604007 (2006) 
  13. P. Kuchment, Quantum graphs I. Some basic structures. Waves in Random media 14, S107–S128 (2004) Zbl1063.81058
  14. P. Kuchment, Quantum graphs II. Some spectral properties of quantum and combinatorial graphs J. Phys. A 38(22), 4887–4900 (2005) Zbl1070.81062
  15. P. Kuchment, Floquet Theory for Partial Differential Equations Birkhauser Verlag, Basel (1993) Zbl0789.35002
  16. P. Kuchment, L. Kunyansky, Spectral properties of high-contrast band-gap materials and operators on graphs., Experimental Mathematics 8, 1–28 (1999) [Crossref] Zbl0930.35112
  17. P. Kuchment, O. Post, On the Spectra of Carbon Nano-Structures. Commun. Math. Phys. 275, 805–826 (2007) [WoS] Zbl1145.81032
  18. D. Malko, C. Neiss, F. Viñes,A. Görling, Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Phys. Rev. Lett. 108, 086804 (2012) [WoS][PubMed][Crossref] 
  19. K. Novoselov, Nobel lecture: Graphene: Materials in the flatland Rev. Mod.Phys. 83, 837–849 (2011) [WoS] 
  20. K. Pankrashkin, Spectra of Schrödinger operators on equilateral quantum graphs, Lett. Math. Phys. 77(2), 139–154 (2006) [Crossref] Zbl1113.81056
  21. M. Reed, B. Simon, Methods of Modern Mathematical Physics: Functional analysis Academic Press, Vol. 4 (1972) Zbl0242.46001
  22. B. Simon. On the genericity of nonvanishing instability intervals in Hills equation Ann. Inst. Henri Poincaré XXIV(1), 91–93 (1976) Zbl0346.34015
  23. K. Ruedenberg, C.W. Scherr, Free-electron network model for conjugated systems I. Theory. J. Chem. Phys. 21(9), 1565–1581 (1953) [Crossref] 
  24. L. E. Thomas. Time dependent approach to scattering from impurities in a crystal. Comm. Math. Phys. 33, 335–343 (1973) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.