Space-Time Estimates of Mild Solutions of a Class of Higher-Order Semilinear Parabolic Equations in L p

Albert N. Sandjo; Célestin Wafo Soh

Nonautonomous Dynamical Systems (2014)

  • Volume: 1, Issue: 1, page 83-92, electronic only
  • ISSN: 2353-0626

Abstract

top
We establish the well-posedness of boundary value problems for a family of nonlinear higherorder parabolic equations which comprises some models of epitaxial growth and thin film theory. In order to achieve this result, we provide a unified framework for constructing local mild solutions in C0([0, T]; Lp(Ω)) by introducing appropriate time-weighted Lebesgue norms inspired by a priori estimates of solutions. This framework allows us to obtain global existence of solutions under the proviso that initial data are reasonably small

How to cite

top

Albert N. Sandjo, and Célestin Wafo Soh. " Space-Time Estimates of Mild Solutions of a Class of Higher-Order Semilinear Parabolic Equations in L p ." Nonautonomous Dynamical Systems 1.1 (2014): 83-92, electronic only. <http://eudml.org/doc/267445>.

@article{AlbertN2014,
abstract = {We establish the well-posedness of boundary value problems for a family of nonlinear higherorder parabolic equations which comprises some models of epitaxial growth and thin film theory. In order to achieve this result, we provide a unified framework for constructing local mild solutions in C0([0, T]; Lp(Ω)) by introducing appropriate time-weighted Lebesgue norms inspired by a priori estimates of solutions. This framework allows us to obtain global existence of solutions under the proviso that initial data are reasonably small},
author = {Albert N. Sandjo, Célestin Wafo Soh},
journal = {Nonautonomous Dynamical Systems},
keywords = {Epitaxy; Thin-film Equation; Scaling invariance; Lp − Lq Estimates; Analytic Semigroup; Kato’s Method; Mild Solution; epitaxy; thin-film equation; scaling invariance; estimates; analytic semigroup; Kato's method; mild solution},
language = {eng},
number = {1},
pages = {83-92, electronic only},
title = { Space-Time Estimates of Mild Solutions of a Class of Higher-Order Semilinear Parabolic Equations in L p },
url = {http://eudml.org/doc/267445},
volume = {1},
year = {2014},
}

TY - JOUR
AU - Albert N. Sandjo
AU - Célestin Wafo Soh
TI - Space-Time Estimates of Mild Solutions of a Class of Higher-Order Semilinear Parabolic Equations in L p
JO - Nonautonomous Dynamical Systems
PY - 2014
VL - 1
IS - 1
SP - 83
EP - 92, electronic only
AB - We establish the well-posedness of boundary value problems for a family of nonlinear higherorder parabolic equations which comprises some models of epitaxial growth and thin film theory. In order to achieve this result, we provide a unified framework for constructing local mild solutions in C0([0, T]; Lp(Ω)) by introducing appropriate time-weighted Lebesgue norms inspired by a priori estimates of solutions. This framework allows us to obtain global existence of solutions under the proviso that initial data are reasonably small
LA - eng
KW - Epitaxy; Thin-film Equation; Scaling invariance; Lp − Lq Estimates; Analytic Semigroup; Kato’s Method; Mild Solution; epitaxy; thin-film equation; scaling invariance; estimates; analytic semigroup; Kato's method; mild solution
UR - http://eudml.org/doc/267445
ER -

References

top
  1. [1] H. Amann, Nonhomogeneous Linear and quasiliear Elliptic and Parabolic Boundary Value Problem, Function Spaces, Differential Operators and Nonlinear Analysis. H. J. Schmeisser, H. Triebel (editors), Teubner, Stuttgart, Leipzig, 1993, 9-126. 
  2. [2] H. Amann, Dynamic theory of quasilinear parabolic equations- II. Reation-difision systems., Difierential Integral Equations, Vol.3, 1990, 13-75. 
  3. [3] H. Amann, Linear and quasilinear parabolic problems. Vol. I, Monographs in Mathematics, Vol.89, Abstract linear theory, Birkhäuser Boston Inc.,Boston, MA, 1995. Zbl0819.35001
  4. [4] G. Caristi and E. Mitidieri, Existence and nonexistence of globale solutions of higher-order parabolic problems with slow decay initial data, J. Math. Appl. 279 (2003), 710-722. Zbl1029.35109
  5. [5] G. Dore, and A. Venni, On the closedness of the sum of two closed operators, Math. Z. 196, 2 (1987), 189-201. Zbl0615.47002
  6. [6] C. M. Elliot, S. Zheng, On the Cahn Hilliard equation, Arch. Rational Mech. Anal. 96 (1986), 339-357. 
  7. [7] H. Fujita, T. Kato, On the Navier-Stokes initial value problem., Arch. Rational Mech. Anal., 16 (1964), 269-315.[Crossref] Zbl0126.42301
  8. [8] Y. Giga and T. Miyakawa , Solution in Lr of Navier-Stokes initial value problem, Arch. Rat. Mech. Anal., 89 (1985), 267-281.[Crossref] Zbl0587.35078
  9. [9] Y. Giga , Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system, J. Difierential Equations 62 (1986), no. 2, 186-212. Zbl0577.35058
  10. [10] L. Golubovic, A. Levandovsky, D. Moldovan, Interface dynamics and far-from equilibrium phase transitions in multilayer epitaxial growth and erosion on crystal surfaces: continuum theory insights, East Asian Journal on Applied Mathematics, 4 (2011), 297-371. Zbl1288.82044
  11. [11] T. Halicioglu, P. J. White, Structures of microclusters: an atomistic approach with three-body interactions, Surface Science, 106 (1981), 45-50. 
  12. [12] T. Kato, Strong Lp solutions of the Navier-Stokes equations in Rm with applications, Math. Z. 187 (1984), 471-480. Zbl0545.35073
  13. [13] T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Bras. Mat. (N.S.) 22 (1992), 127-155.[Crossref] Zbl0781.35052
  14. [14] B. King, O. Stein, M. Winkler, A fourth-order parabolic eqaution modeling epitaxial thin film growth, J. Math. Anal. Appl. 286(2003), 459-490. Zbl1029.35110
  15. [15] R. Lam, D. G. Vlachos, Multiscale model for epitaxial growth of films: growth mode transition, Phys. Rev. B, 64 (2001), 035401. 
  16. [16] N. H. de Leeuw, S. C. Parker, Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite and vaterite: an atomistic approach, J. Phys. Chem. B, 102 (1998), 2914-2922. 
  17. [17] T. S. Lo, R. Kohn, A new approach to continuum modeling of epitaxial growth: slope selection, coarsening, and the role of the uphill current, Phisica D: Nonlinear Phenomena, 161 (2002), 237-257. Zbl1041.82014
  18. [18] C. Melcher, Well-posedness for a class of nonlinear fourth-order difiusion equations, Preprint. 
  19. [19] C. Miao, Weak Solution of class of nonlinear heat equation systems and application to the Navier-Stokes system, J. Difierential Equations, 61 (1986), 141-151. 
  20. [20] C. Miao, Time-Space Estimates of Solutions to General Semilinear Parabolic Equations, Tokio J. Math., Vol.24. No.1, (2001), 246-276. Zbl1106.35027
  21. [21] C. Miao, B. Zhang, Cauchy Problem for semilinear parabolic Equations in Besov spaces, Houston Journal of Mathematics, Vol.30, No.3 (2004), 829-878. Zbl1056.35078
  22. [22] C. Miao, B. Yuan, B. Zhang, Strong solution to the nonlinear heat equation in homogeneous Besov spaces, J. Nonlinear Analysis, 67 (2007), 1329-1343. Zbl1124.35029
  23. [23] C. Miao, B. Yuan, B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, J. Nonlinear Analysis, 68 (2008), 461-484. Zbl1132.35047
  24. [24] A. Nana Sandjo, C. Wafo Soh and M. Wiegner, Solutions of a fourth-order parabolic equation modeling epitaxial thin film growth, Preprint. 
  25. [25] A. Nana Sandjo, Solutions for fourth-order parabolic equation modeling epitaxial thin film growth, Dissertation, Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University, Germany, (August 2011). 
  26. [26] L. Nirenberg, On elliptic partial difierential equations, Annali della Scoula Norm. Sup. Pisa, 13 (1959), 115-162. 
  27. [27] A. Pazy, Semigroups of linear operators and applications to partial difierential equations, Apllied Mathematical Sciences, 44. Springer-Verlag, New York-Berlin, 1983. 
  28. [28] H. B. Steward, Generation of analytic semigroup by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. soc. 259 (1980), 299-310. 
  29. [29] F. B. Weisler, Local existence and nonexistence for semilinear parabolic equation in Lp, Indiana Univ. Math. J. 29 (1980), 219-230. 
  30. [30] F. B. Weisler, Semilinear evolution equations in Banach spaces, J. of Funct. Anal. 32 (1979), 277-296. 
  31. [31] M. Wiegner, The Navier-Stokes Equations-a Neverending Challenge?, Jber. d. Dt. Math.-Verein., 101 (1999), 1-25. Zbl0924.35100

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.