Several Integrability Formulas of Special Functions

Cuiying Peng; Fuguo Ge; Xiquan Liang

Formalized Mathematics (2007)

  • Volume: 15, Issue: 4, page 189-198
  • ISSN: 1426-2630

Abstract

top
In this article, we give several integrability formulas of special and composite functions including trigonometric function, inverse trigonometric function, hyperbolic function and logarithmic function.

How to cite

top

Cuiying Peng, Fuguo Ge, and Xiquan Liang. "Several Integrability Formulas of Special Functions." Formalized Mathematics 15.4 (2007): 189-198. <http://eudml.org/doc/267483>.

@article{CuiyingPeng2007,
abstract = {In this article, we give several integrability formulas of special and composite functions including trigonometric function, inverse trigonometric function, hyperbolic function and logarithmic function.},
author = {Cuiying Peng, Fuguo Ge, Xiquan Liang},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {189-198},
title = {Several Integrability Formulas of Special Functions},
url = {http://eudml.org/doc/267483},
volume = {15},
year = {2007},
}

TY - JOUR
AU - Cuiying Peng
AU - Fuguo Ge
AU - Xiquan Liang
TI - Several Integrability Formulas of Special Functions
JO - Formalized Mathematics
PY - 2007
VL - 15
IS - 4
SP - 189
EP - 198
AB - In this article, we give several integrability formulas of special and composite functions including trigonometric function, inverse trigonometric function, hyperbolic function and logarithmic function.
LA - eng
UR - http://eudml.org/doc/267483
ER -

References

top
  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  2. [2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. 
  3. [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  4. [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  5. [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  6. [6] Czesław Byliński. and Piotr Rudnicki. Bounding boxes for compact sets in ε2. Formalized Mathematics, 6(3):427-440, 1997. 
  7. [7] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999. 
  8. [8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R t o R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001. 
  9. [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  10. [10] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. Formalized Mathematics, 13(1):73-79, 2005. Zbl1276.26026
  11. [11] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990. 
  12. [12] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990. 
  13. [13] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990. 
  14. [14] Takashi Mitsuishi and Yuguang Yang. Properties of the trigonometric function. Formalized Mathematics, 8(1):103-106, 1999. 
  15. [15] Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991. 
  16. [16] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990. 
  17. [17] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990. 
  18. [18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  19. [19] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics. 
  20. [20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990. 
  21. [21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990. 
  22. [22] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003. 
  23. [23] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990. 
  24. [24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  25. [25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  26. [26] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.