Several Differentiation Formulas of Special Functions. Part III

Bo Li; Yan Zhang; Xiquan Liang

Formalized Mathematics (2006)

  • Volume: 14, Issue: 1, page 37-45
  • ISSN: 1426-2630

Abstract

top
In this article, we give several differentiation formulas of special and composite functions including trigonometric function, inverse trigonometric function, polynomial function and logarithmic function.

How to cite

top

Bo Li, Yan Zhang, and Xiquan Liang. "Several Differentiation Formulas of Special Functions. Part III." Formalized Mathematics 14.1 (2006): 37-45. <http://eudml.org/doc/267503>.

@article{BoLi2006,
abstract = {In this article, we give several differentiation formulas of special and composite functions including trigonometric function, inverse trigonometric function, polynomial function and logarithmic function.},
author = {Bo Li, Yan Zhang, Xiquan Liang},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {37-45},
title = {Several Differentiation Formulas of Special Functions. Part III},
url = {http://eudml.org/doc/267503},
volume = {14},
year = {2006},
}

TY - JOUR
AU - Bo Li
AU - Yan Zhang
AU - Xiquan Liang
TI - Several Differentiation Formulas of Special Functions. Part III
JO - Formalized Mathematics
PY - 2006
VL - 14
IS - 1
SP - 37
EP - 45
AB - In this article, we give several differentiation formulas of special and composite functions including trigonometric function, inverse trigonometric function, polynomial function and logarithmic function.
LA - eng
UR - http://eudml.org/doc/267503
ER -

References

top
  1. [1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  2. [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  3. [3] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. Formalized Mathematics, 13(1):73-79, 2005. Zbl1276.26026
  4. [4] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990. 
  5. [5] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990. 
  6. [6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990. 
  7. [7] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991. 
  8. [8] Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991. 
  9. [9] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990. 
  10. [10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  11. [11] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004. 
  12. [12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics. 
  13. [13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990. 
  14. [14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990. 
  15. [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  16. [16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  17. [17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.