Vertex-Distinguishing IE-Total Colorings of Complete Bipartite Graphs Km,N(m < n)

Xiang’en Chen; Yuping Gao; Bing Yao

Discussiones Mathematicae Graph Theory (2013)

  • Volume: 33, Issue: 2, page 289-306
  • ISSN: 2083-5892

Abstract

top
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u) 6= C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χie vt(G), and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. VDIET colorings of complete bipartite graphs Km,n(m < n) are discussed in this paper. Particularly, the VDIET chromatic numbers of Km,n(1 ≤ m ≤ 7,m < n) as well as complete graphs Kn are obtained.

How to cite

top

Xiang’en Chen, Yuping Gao, and Bing Yao. "Vertex-Distinguishing IE-Total Colorings of Complete Bipartite Graphs Km,N(m < n)." Discussiones Mathematicae Graph Theory 33.2 (2013): 289-306. <http://eudml.org/doc/267543>.

@article{Xiang2013,
abstract = {Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u) 6= C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χie vt(G), and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. VDIET colorings of complete bipartite graphs Km,n(m < n) are discussed in this paper. Particularly, the VDIET chromatic numbers of Km,n(1 ≤ m ≤ 7,m < n) as well as complete graphs Kn are obtained.},
author = {Xiang’en Chen, Yuping Gao, Bing Yao},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {complete bipartite graphs; IE-total coloring; vertex-distinguishing IE-total coloring; vertex-distinguishing IE-total chromatic number},
language = {eng},
number = {2},
pages = {289-306},
title = {Vertex-Distinguishing IE-Total Colorings of Complete Bipartite Graphs Km,N(m < n)},
url = {http://eudml.org/doc/267543},
volume = {33},
year = {2013},
}

TY - JOUR
AU - Xiang’en Chen
AU - Yuping Gao
AU - Bing Yao
TI - Vertex-Distinguishing IE-Total Colorings of Complete Bipartite Graphs Km,N(m < n)
JO - Discussiones Mathematicae Graph Theory
PY - 2013
VL - 33
IS - 2
SP - 289
EP - 306
AB - Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u) 6= C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χie vt(G), and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. VDIET colorings of complete bipartite graphs Km,n(m < n) are discussed in this paper. Particularly, the VDIET chromatic numbers of Km,n(1 ≤ m ≤ 7,m < n) as well as complete graphs Kn are obtained.
LA - eng
KW - complete bipartite graphs; IE-total coloring; vertex-distinguishing IE-total coloring; vertex-distinguishing IE-total chromatic number
UR - http://eudml.org/doc/267543
ER -

References

top
  1. [1] P.N. Balister, B. Bollobás and R.H. Shelp, Vertex distinguishing colorings of graphs with Δ(G) = 2, Discrete Math. 252 (2002) 17-29. doi:10.1016/S0012-365X(01)00287-4[Crossref] 
  2. [2] P.N. Balister, O.M. Riordan and R.H. Schelp, Vertex distinguishing edge colorings of graphs, J. Graph Theory 42 (2003) 95-109. doi:10.1002/jgt.10076[Crossref] Zbl1008.05067
  3. [3] C. Bazgan, A. Harkat-Benhamdine, H. Li and M. Wo´zniak, On the vertexdistinguishing proper edge-colorings of graphs, J. Combin. Theory (B) 75 (1999) 288-301. doi:10.1006/jctb.1998.1884[Crossref] 
  4. [4] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory 26 (1997) 73-82. doi:10.1002/(SICI)1097-0118(199710)26:2h73::AID-JGT2i3.0.CO;2-C[Crossref] Zbl0886.05068
  5. [5] J. Černý, M. Horňák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21-31. Zbl0853.05040
  6. [6] X. Chen, Asymptotic behaviour of the vertex-distinguishing total chromatic numbers of n-cube, J. Northwest Univ. 41(5) (2005) 1-3. Zbl1092.05503
  7. [7] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: F. Harary, J.S. Maybee (Eds.), Graphs and Application, New York (1985) 147-162. 
  8. [8] M. Horňák and R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995) 289-301. 
  9. [9] M. Horňák and R. Soták, Asymptotic behaviour of the observability of Qn, Discrete Math. 176 (1997) 139-148. doi:10.1016/S0012-365X(96)00292-0[Crossref] Zbl0890.05028
  10. [10] M. Horňák and R. Soták, The fifth jump of the point-distinguishing chromatic index of Kn,n, Ars Combin. 42 (1996) 233-242. Zbl0852.05045
  11. [11] M. Horňák and R. Soták, Localization jumps of the point-distinguishing chromatic index of Kn,n, Discuss. Math. Graph Theory 17 (1997) 243-251. doi:10.7151/dmgt.1051[Crossref] Zbl0906.05025
  12. [12] M. Horňák and N. Zagaglia Salvi, On the point-distinguishing chromatic index of complete bipartite graphs, Ars Combin. 80 (2006) 75-85. 
  13. [13] N. Zagaglia Salvi, On the point-distinguishing chromatic index of Kn,n, Ars Combin. 25B (1988) 93-104. 
  14. [14] N. Zagaglia Salvi, On the value of the point-distinguishing chromatic index of Kn,n, Ars Combin. 29B (1990) 235-244. 
  15. [15] Z. Zhang, P. Qiu, B. Xu, J. Li, X.Chen and B.Yao, Vertex-distinguishing total colorings of graphs, Ars Combin. 87 (2008) 33-45. Zbl1224.05203

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.