On differential sandwich theorems of analytic functions defined by certain linear operator

Mohamed Aouf; Tamer Seoudy

Annales UMCS, Mathematica (2010)

  • Volume: 64, Issue: 2, page 1-14
  • ISSN: 2083-7402

Abstract

top
In this paper, we obtain some applications of first order differential subordination and superordination results involving certain linear operator and other linear operators for certain normalized analytic functions. Some of our results improve and generalize previously known results.

How to cite

top

Mohamed Aouf, and Tamer Seoudy. "On differential sandwich theorems of analytic functions defined by certain linear operator." Annales UMCS, Mathematica 64.2 (2010): 1-14. <http://eudml.org/doc/267557>.

@article{MohamedAouf2010,
abstract = {In this paper, we obtain some applications of first order differential subordination and superordination results involving certain linear operator and other linear operators for certain normalized analytic functions. Some of our results improve and generalize previously known results.},
author = {Mohamed Aouf, Tamer Seoudy},
journal = {Annales UMCS, Mathematica},
keywords = {Analytic function; Hadamard product; differential subordination; superordination; linear operator; analytic function},
language = {eng},
number = {2},
pages = {1-14},
title = {On differential sandwich theorems of analytic functions defined by certain linear operator},
url = {http://eudml.org/doc/267557},
volume = {64},
year = {2010},
}

TY - JOUR
AU - Mohamed Aouf
AU - Tamer Seoudy
TI - On differential sandwich theorems of analytic functions defined by certain linear operator
JO - Annales UMCS, Mathematica
PY - 2010
VL - 64
IS - 2
SP - 1
EP - 14
AB - In this paper, we obtain some applications of first order differential subordination and superordination results involving certain linear operator and other linear operators for certain normalized analytic functions. Some of our results improve and generalize previously known results.
LA - eng
KW - Analytic function; Hadamard product; differential subordination; superordination; linear operator; analytic function
UR - http://eudml.org/doc/267557
ER -

References

top
  1. Ali, R. M., Ravichandran, V. and Subramanian, K. G., Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15(1) (2004), 87-94. Zbl1074.30022
  2. Al-Oboudi, F., On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436. Zbl1072.30009
  3. Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.[Crossref] Zbl0172.09703
  4. Bulboacă, T., Classes of first order differential superordinations, Demonstratio Math. 35(2) (2002), 287-292. Zbl1010.30020
  5. Bulboacă, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005. 
  6. Carlson, B. C., Shaffer, D. B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.[Crossref] Zbl0567.30009
  7. Cătaş, A., Oros, G. I. and Oros, G., Differential subordinations associated with multiplier transformations, Abstr. Appl. Anal. 2008 (2008), Art. ID 845724, 1-11.[WoS] Zbl1153.30021
  8. Cho, N. E., Kim, T. G., Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40(3) (2003), 399-410. Zbl1032.30007
  9. Dziok, J., Srivastava, H. M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.[Crossref][WoS] Zbl0937.30010
  10. Dziok, J., Srivastava, H. M., Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math. (Kyungshang) 5 (2002), 115-125. Zbl1038.30009
  11. Dziok, J., Srivastava, H. M., Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct. 14 (2003), 7-18.[Crossref] Zbl1040.30003
  12. Hohlov, Yu. E., Operators and operations on the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat. 10 (1978), 83-89 (Russian). 
  13. Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-658.[Crossref] Zbl0158.07702
  14. Livingston, A. E., On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966), 352-357.[Crossref] Zbl0158.07701
  15. Miller, S. S., Mocanu, P. T., Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York, Basel, 2000. 
  16. Miller, S. S., Mocanu, P. T., Subordinates of differential superordinations, Complex Var. Theory Appl. 48(10) (2003), 815-826. Zbl1039.30011
  17. Nechita, V. O., Differential subordinations and superordinations for analytic functions defined by the generalized Sălăgean derivative, Acta Univ. Apulensis 16 (2008), 143-156. Zbl1212.30054
  18. Owa, S., Srivastava, H. M., Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077. Zbl0611.33007
  19. Ruscheweyh, St., New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.[Crossref] Zbl0303.30006
  20. Saitoh, H., A linear operator and its applications of first order differential subordinations, Math. Japon. 44 (1996), 31-38. Zbl0887.30021
  21. Sălăgean, G. S., Subclasses of univalent functions, Complex analysis - fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math. 1013, Springer-Verlag, Berlin, 1983. 
  22. Selvaraj, C., Karthikeyan, K. R., Differential subordination and superordination for certain subclasses of analytic functions, Far East J. Math. Sci. (FJMS) 29(2) (2008), 419-430. Zbl1155.30335
  23. Shanmugam, T. N., Ravichandran, V. and Sivasubramanian, S., Differential sandwich theorems for some subclasses of analytic functions, Aust. J. Math. Anal. Appl. 3(1) (2006), Art. 8, 1-11. Zbl1091.30019
  24. Tuneski, N., On certain sufficient conditions for starlikeness, Internat. J. Math. Math. Sci. 23(8) (2000), 521-527.[Crossref] Zbl0954.30003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.