Some framed f -structures on transversally Finsler foliations
Annales UMCS, Mathematica (2011)
- Volume: 65, Issue: 1, page 87-96
- ISSN: 2083-7402
Access Full Article
topAbstract
topHow to cite
topCristian Ida. " Some framed f -structures on transversally Finsler foliations ." Annales UMCS, Mathematica 65.1 (2011): 87-96. <http://eudml.org/doc/267568>.
@article{CristianIda2011,
abstract = {Some problems concerning to Liouville distribution and framed f-structures are studied on the normal bundle of the lifted Finsler foliation to its normal bundle. It is shown that the Liouville distribution of transversally Finsler foliations is an integrable one and some natural framed f(3, ε)-structures of corank 2 exist on the normal bundle of the lifted Finsler foliation.},
author = {Cristian Ida},
journal = {Annales UMCS, Mathematica},
keywords = {Transversally Finsler foliation; Liouville distribution; framed f-structures; transversal Finsler foliation; framed -structure},
language = {eng},
number = {1},
pages = {87-96},
title = { Some framed f -structures on transversally Finsler foliations },
url = {http://eudml.org/doc/267568},
volume = {65},
year = {2011},
}
TY - JOUR
AU - Cristian Ida
TI - Some framed f -structures on transversally Finsler foliations
JO - Annales UMCS, Mathematica
PY - 2011
VL - 65
IS - 1
SP - 87
EP - 96
AB - Some problems concerning to Liouville distribution and framed f-structures are studied on the normal bundle of the lifted Finsler foliation to its normal bundle. It is shown that the Liouville distribution of transversally Finsler foliations is an integrable one and some natural framed f(3, ε)-structures of corank 2 exist on the normal bundle of the lifted Finsler foliation.
LA - eng
KW - Transversally Finsler foliation; Liouville distribution; framed f-structures; transversal Finsler foliation; framed -structure
UR - http://eudml.org/doc/267568
ER -
References
top- Abate, M., Patrizio, G., Finsler Metrics - A Global Approach, Lecture Notes in Math., 1591, Springer-Verlag, Berlin, 1994. Zbl0837.53001
- Anastasiei, M., A framed f-structure on tangent bundle of a Finsler space, An. Univ. Bucureşti, Mat.-Inf., 49 (2000), 3-9.
- Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemannian Finsler Geometry, Graduate Texts in Math., 200, Springer-Verlag, New York, 2000.
- Bejancu, A., Farran, H. R., On the vertical bundle of a pseudo-Finsler manifold, Int. J. Math. Math. Sci. 22 (3) (1997), 637-642. Zbl0978.53050
- Gîrţu, M., An almost paracontact structure on the indicatrix bundle of a Finsler space, Balkan J. Geom. Appl. 7(2) (2002), 43-48. Zbl1026.53043
- Gîrţu, M., A framed f(3, -1)-structure on the tangent bundle of a Lagrange space, Demonstratio Math. 37(4) (2004), 955-961. Zbl1076.53094
- Hasegawa, I., Yamaguchi, K. and Shimada, H., Sasakian structures on Finsler manifolds, Antonelli, P. L., Miron R. (eds.), Lagrange and Finsler Geometry, Kluwer Acad. Publ., Dordrecht, 1996, 75-80. Zbl0843.53016
- Miernowski, A., A note on transversally Finsler foliations, Ann. Univ. Mariae Curie-Skłodowska Sect. A 60 (2006), 57-64. Zbl1136.53027
- Miernowski, A., Mozgawa, W., Lift of the Finsler foliations to its normal bundle, Differential Geom. Appl. 24 (2006), 209-214.[Crossref] Zbl1095.53021
- Mihai, I., Roşca, R. and Verstraelen, L., Some aspects of the differential geometry of vector fields, PADGE, Katholieke Univ. Leuven, vol. 2 (1996). Zbl0960.53019
- Miron, R., Anastasiei, M., The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Acad. Publ., Dordrecht, 1994. Zbl0831.53001
- Popescu, P., Popescu, M., Lagrangians adapted to submersions and foliations, Differential Geom. Appl. 27 (2009), 171-178.[WoS][Crossref] Zbl1162.53019
- Singh, K. D., Singh, R., Some f(3, ε)-structure manifold, Demonstratio Math. 10 (3-4) (1977), 637-645.
- Vaisman, I., Lagrange geometry on tangent manifolds, Int. J. Math. Math. Sci. 51 (2003), 3241-3266.[Crossref] Zbl1045.53021
- Yano, K., On a structure defined by a tensor field of type (1, 1) satisfying f3 + f = 0, Tensor (N.S.) 14 (1963), 99-109. Zbl0122.40705
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.