When is an Incomplete 3 × n Latin Rectangle Completable?
Reinhardt Euler; Paweł Oleksik
Discussiones Mathematicae Graph Theory (2013)
- Volume: 33, Issue: 1, page 57-69
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReinhardt Euler, and Paweł Oleksik. "When is an Incomplete 3 × n Latin Rectangle Completable?." Discussiones Mathematicae Graph Theory 33.1 (2013): 57-69. <http://eudml.org/doc/267599>.
@article{ReinhardtEuler2013,
abstract = {We use the concept of an availability matrix, introduced in Euler [7], to describe the family of all minimal incomplete 3 × n latin rectangles that are not completable. We also present a complete description of minimal incomplete such latin squares of order 4.},
author = {Reinhardt Euler, Paweł Oleksik},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {incomplete latin rectangle; completability; solution space enumeration; branch-and-bound; incomplete Latin rectangle},
language = {eng},
number = {1},
pages = {57-69},
title = {When is an Incomplete 3 × n Latin Rectangle Completable?},
url = {http://eudml.org/doc/267599},
volume = {33},
year = {2013},
}
TY - JOUR
AU - Reinhardt Euler
AU - Paweł Oleksik
TI - When is an Incomplete 3 × n Latin Rectangle Completable?
JO - Discussiones Mathematicae Graph Theory
PY - 2013
VL - 33
IS - 1
SP - 57
EP - 69
AB - We use the concept of an availability matrix, introduced in Euler [7], to describe the family of all minimal incomplete 3 × n latin rectangles that are not completable. We also present a complete description of minimal incomplete such latin squares of order 4.
LA - eng
KW - incomplete latin rectangle; completability; solution space enumeration; branch-and-bound; incomplete Latin rectangle
UR - http://eudml.org/doc/267599
ER -
References
top- [1] P. Adams, D. Bryant and M. Buchanan, Completing partial latin squares with two filled rows and two filled columns, Electron. J. Combin. 15 (2008) #R56. Zbl1181.05018
- [2] L.D. Andersen and A.J.W. Hilton, Thank Evans!, Proc. Lond. Math. Soc. (3) 47 (1983) 507-522. doi:10.1112/plms/s3-47.3.507[Crossref]
- [3] L. Brankovic, P. Horák, M. Miller and A. Rosa, Premature partial latin squares, Ars Combin. 63 (2002), 175-184. Zbl1071.05016
- [4] R. Burkard, M. Dell’Amico and S. Martello, Assignment Problems (SIAM, 2009).
- [5] C. Colbourn, The complexity of completing partial latin squares, Discrete Appl. Math. 8 (1984) 25-30. doi:10.1016/0166-218X(84)90075-1[Crossref] Zbl0538.05013
- [6] R. Euler, R.E. Burkard and R. Grommes, On latin squares and the facial structure of related polytopes, Discrete Math. 62 (1986) 155-181. doi:10.1016/0012-365X(86)90116-0[Crossref] Zbl0614.05015
- [7] R. Euler, On the completability of incomplete latin squares, European J. Combin. 31 (2010) 535-552. doi:10.1016/j.ejc.2009.03.036[Crossref][WoS] Zbl1201.05016
- [8] T. Evans, Embedding incomplete latin squares, Amer. Math. Monthly 67 (1960) 958-961. doi:10.2307/2309221[Crossref]
- [9] M. Hagen, Lower bounds for three algorithms for transversal hypergraph generation, Discrete Appl. Math. 157 (2009) 1460-1469. doi:10.1016/j.dam.2008.10.004[WoS][Crossref] Zbl1177.05116
- [10] M. Hall, An existence theorem for latin squares, Bull. Amer. Math. Soc. 51 (1945) 387-388. doi:10.1090/S0002-9904-1945-08361-X[Crossref] Zbl0060.02801
- [11] L. Khachiyan, E. Boros, K. Elbassioni and V. Gurvich, A global parallel algorithm for the hypergraph transversal problem, Inform. Process. Lett. 101 (2007) 148-155. doi:10.1016/j.ipl.2006.09.006[WoS][Crossref] Zbl1185.68838
- [12] H.J. Ryser, A combinatorial theorem with an application to latin rectangles, Proc. Amer. Math. Soc. 2 (1951) 550-552. doi:10.1090/S0002-9939-1951-0042361-0[Crossref] Zbl0043.01202
- [13] B. Smetaniuk, A new construction on latin squares - I: A proof of the Evans Conjecture, Ars Combin. 11 (1981) 155-172. Zbl0471.05013
- [14] F.C.R. Spieksma, Multi-index assignment problems: complexity, approximation, applications, in: Nonlinear Assignment Problems, Algorithms and Applications, L. Pitsoulis and P. Pardalos, (Eds.), Kluwer (2000) 1-12. Zbl1029.90036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.