Smith normal form of a matrix of generalized polynomials with rational exponents
Miroslav Kureš; Ladislav Skula
Annales UMCS, Mathematica (2008)
- Volume: 62, Issue: 1, page 81-90
- ISSN: 2083-7402
Access Full Article
topAbstract
topHow to cite
topMiroslav Kureš, and Ladislav Skula. "Smith normal form of a matrix of generalized polynomials with rational exponents." Annales UMCS, Mathematica 62.1 (2008): 81-90. <http://eudml.org/doc/267665>.
@article{MiroslavKureš2008,
abstract = {It is proved that generalized polynomials with rational exponents over a commutative field form an elementary divisor ring; an algorithm for computing the Smith normal form is derived and implemented.},
author = {Miroslav Kureš, Ladislav Skula},
journal = {Annales UMCS, Mathematica},
keywords = {Smith normal form; generalized polynomials with rational exponents; elementary divisor ring; algorithm},
language = {eng},
number = {1},
pages = {81-90},
title = {Smith normal form of a matrix of generalized polynomials with rational exponents},
url = {http://eudml.org/doc/267665},
volume = {62},
year = {2008},
}
TY - JOUR
AU - Miroslav Kureš
AU - Ladislav Skula
TI - Smith normal form of a matrix of generalized polynomials with rational exponents
JO - Annales UMCS, Mathematica
PY - 2008
VL - 62
IS - 1
SP - 81
EP - 90
AB - It is proved that generalized polynomials with rational exponents over a commutative field form an elementary divisor ring; an algorithm for computing the Smith normal form is derived and implemented.
LA - eng
KW - Smith normal form; generalized polynomials with rational exponents; elementary divisor ring; algorithm
UR - http://eudml.org/doc/267665
ER -
References
top- Brown, W. C., Matrices over Commutative Rings, Marcel Dekker, 1993.[WoS] Zbl0782.15001
- Cohen, H., Hermite and Smith normal form algorithms over Dedekind domains, Math. Comp. 65 (1996), 1681-1699. Zbl0853.11100
- Cohn, P. M., On the structure of GL2 of a ring, Publications Mathématiques de l'I. H.É. S. 30 (1966), 5-53.
- Delzell, C. N., Extension of Pólya's theorems to signomials with rational exponents, Preprint available on
- Gantmacher, F. R., The Theory of Matrices, Vol. 1, AMS Chelsea Publishing, Providence, RI, 1998. Zbl0927.15002
- Gillman, L., Henriksen, M., Some remarks about elementary divisor rings, Trans. Am. Math. Soc. 82 (1956), 362-365. Zbl0073.02203
- Helmer, O., The elementary divisor theorem for certain rings without chain condition, Bull. Am. Math. Soc. 49 (1943), 225-236. Zbl0060.07606
- Kannan, A., Bachem, A., Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix, SIAM J. Comput. 8 (1979), 499-507. Zbl0446.65015
- Kaplansky, I., Elementary divisors and modules, Trans. Am. Math. Soc. 66 (1949), 464-491. Zbl0036.01903
- Karásek, J., Šlapal, J., Polynomials and Generalized Polynomials in Control Theory, (Czech), CERM Academic Publishing Brno, 2007.
- Kureš, M., On the computation of Smith normal form of a matrix of generalized polynomials with rational exponents, in: Aplimat 2007, Proceedings of the International Conference Aplimat, Bratislava, Slovakia, February 6-9, 2007, Slovak University of Technology, 2007, pp. 103-108.
- Pascolletti, A.: SmithForm.m, version 1.0 (2005). The Mathematica package available on
- Suslin, A. A., On the structure of the special linear group over polynomial rings, Math. USSR, Izv. 11 (1977), 221-238. Zbl0378.13002
- Villard, G., Computation of the Smith normal form of polynomial matrices, in: ISSAC '93, Proceedings of the 1993 international symposium on Symbolic and algebraic computation, Kiev, Ukraine, July 6-8, 1993, ACM Press Baltimore, 1993, pp. 209-217. Zbl0964.65507
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.