# Smith normal form of a matrix of generalized polynomials with rational exponents

Miroslav Kureš; Ladislav Skula

Annales UMCS, Mathematica (2008)

- Volume: 62, Issue: 1, page 81-90
- ISSN: 2083-7402

## Access Full Article

top## Abstract

top## How to cite

topMiroslav Kureš, and Ladislav Skula. "Smith normal form of a matrix of generalized polynomials with rational exponents." Annales UMCS, Mathematica 62.1 (2008): 81-90. <http://eudml.org/doc/267665>.

@article{MiroslavKureš2008,

abstract = {It is proved that generalized polynomials with rational exponents over a commutative field form an elementary divisor ring; an algorithm for computing the Smith normal form is derived and implemented.},

author = {Miroslav Kureš, Ladislav Skula},

journal = {Annales UMCS, Mathematica},

keywords = {Smith normal form; generalized polynomials with rational exponents; elementary divisor ring; algorithm},

language = {eng},

number = {1},

pages = {81-90},

title = {Smith normal form of a matrix of generalized polynomials with rational exponents},

url = {http://eudml.org/doc/267665},

volume = {62},

year = {2008},

}

TY - JOUR

AU - Miroslav Kureš

AU - Ladislav Skula

TI - Smith normal form of a matrix of generalized polynomials with rational exponents

JO - Annales UMCS, Mathematica

PY - 2008

VL - 62

IS - 1

SP - 81

EP - 90

AB - It is proved that generalized polynomials with rational exponents over a commutative field form an elementary divisor ring; an algorithm for computing the Smith normal form is derived and implemented.

LA - eng

KW - Smith normal form; generalized polynomials with rational exponents; elementary divisor ring; algorithm

UR - http://eudml.org/doc/267665

ER -

## References

top- Brown, W. C., Matrices over Commutative Rings, Marcel Dekker, 1993.[WoS] Zbl0782.15001
- Cohen, H., Hermite and Smith normal form algorithms over Dedekind domains, Math. Comp. 65 (1996), 1681-1699. Zbl0853.11100
- Cohn, P. M., On the structure of GL2 of a ring, Publications Mathématiques de l'I. H.É. S. 30 (1966), 5-53.
- Delzell, C. N., Extension of Pólya's theorems to signomials with rational exponents, Preprint available on
- Gantmacher, F. R., The Theory of Matrices, Vol. 1, AMS Chelsea Publishing, Providence, RI, 1998. Zbl0927.15002
- Gillman, L., Henriksen, M., Some remarks about elementary divisor rings, Trans. Am. Math. Soc. 82 (1956), 362-365. Zbl0073.02203
- Helmer, O., The elementary divisor theorem for certain rings without chain condition, Bull. Am. Math. Soc. 49 (1943), 225-236. Zbl0060.07606
- Kannan, A., Bachem, A., Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix, SIAM J. Comput. 8 (1979), 499-507. Zbl0446.65015
- Kaplansky, I., Elementary divisors and modules, Trans. Am. Math. Soc. 66 (1949), 464-491. Zbl0036.01903
- Karásek, J., Šlapal, J., Polynomials and Generalized Polynomials in Control Theory, (Czech), CERM Academic Publishing Brno, 2007.
- Kureš, M., On the computation of Smith normal form of a matrix of generalized polynomials with rational exponents, in: Aplimat 2007, Proceedings of the International Conference Aplimat, Bratislava, Slovakia, February 6-9, 2007, Slovak University of Technology, 2007, pp. 103-108.
- Pascolletti, A.: SmithForm.m, version 1.0 (2005). The Mathematica package available on
- Suslin, A. A., On the structure of the special linear group over polynomial rings, Math. USSR, Izv. 11 (1977), 221-238. Zbl0378.13002
- Villard, G., Computation of the Smith normal form of polynomial matrices, in: ISSAC '93, Proceedings of the 1993 international symposium on Symbolic and algebraic computation, Kiev, Ukraine, July 6-8, 1993, ACM Press Baltimore, 1993, pp. 209-217. Zbl0964.65507

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.