# Chromatic Polynomials of Mixed Hypercycles

Julian A. Allagan; David Slutzky

Discussiones Mathematicae Graph Theory (2014)

- Volume: 34, Issue: 3, page 547-558
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topJulian A. Allagan, and David Slutzky. "Chromatic Polynomials of Mixed Hypercycles." Discussiones Mathematicae Graph Theory 34.3 (2014): 547-558. <http://eudml.org/doc/267673>.

@article{JulianA2014,

abstract = {We color the vertices of each of the edges of a C-hypergraph (or cohypergraph) in such a way that at least two vertices receive the same color and in every proper coloring of a B-hypergraph (or bihypergraph), we forbid the cases when the vertices of any of its edges are colored with the same color (monochromatic) or when they are all colored with distinct colors (rainbow). In this paper, we determined explicit formulae for the chromatic polynomials of C-hypercycles and B-hypercycles},

author = {Julian A. Allagan, David Slutzky},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {hypercycle; mixed hypergraph; chromatic polynomial},

language = {eng},

number = {3},

pages = {547-558},

title = {Chromatic Polynomials of Mixed Hypercycles},

url = {http://eudml.org/doc/267673},

volume = {34},

year = {2014},

}

TY - JOUR

AU - Julian A. Allagan

AU - David Slutzky

TI - Chromatic Polynomials of Mixed Hypercycles

JO - Discussiones Mathematicae Graph Theory

PY - 2014

VL - 34

IS - 3

SP - 547

EP - 558

AB - We color the vertices of each of the edges of a C-hypergraph (or cohypergraph) in such a way that at least two vertices receive the same color and in every proper coloring of a B-hypergraph (or bihypergraph), we forbid the cases when the vertices of any of its edges are colored with the same color (monochromatic) or when they are all colored with distinct colors (rainbow). In this paper, we determined explicit formulae for the chromatic polynomials of C-hypercycles and B-hypercycles

LA - eng

KW - hypercycle; mixed hypergraph; chromatic polynomial

UR - http://eudml.org/doc/267673

ER -

## References

top- [1] J.A. Allagan, The chromatic polynomials of some linear uniform hypergraphs, Congr. Numer. 187 (2007) 156-160.[WoS] Zbl1133.05029
- [2] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
- [3] A.A. Bhatti, S.A. Bokhary and I. Tomescu, On the chromaticity of multi-bridge hypergraphs, Graphs Combin. 25 (2009) 145-152. doi:10.1007/s00373-008-0831-7[Crossref] Zbl1213.05065
- [4] M. Borowiecki and E. Lazuka, On chromaticity of hypergraphs, Discrete Math. 307 (2007) 1418-1429. doi:10.1016/j.disc.2005.11.079[WoS][Crossref] Zbl1119.05040
- [5] M. Borowiecki and E. Lazuka, Chromatic polynomials of hypergraphs, Discuss. Math. Graph Theory 20 (2000) 293-301. doi:10.7151/dmgt.1128[Crossref] Zbl0979.05044
- [6] F.M. Dong, K.M. Koh and K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs (Company Singapore: World Scientific Publishing., 2005). Zbl1070.05038
- [7] G. Lo Faro, L. Milazzo and A. Tripodi, On the upper and lower chromatic number of BSQSS(16), Electron. J. Combin. 8 (2001)#R6. Zbl0974.05034
- [8] M. Gionfriddo, L. Milazzo, A. Rosa and V. Voloshin, Bicolouring Steiner systems S(2, 4, v), Discrete Math. 283 (2004) 249-253. doi:10.1016/j.disc.2003.11.016[Crossref] Zbl1044.05018
- [9] D. Kr´al’, J. Kratochvil and H. Voss, Mixed hypercacti, Discrete Math. 286 (2004) 99-113. doi:10.1016/j.disc.2003.11.051[Crossref] Zbl1064.05060
- [10] T. Jiang, D. Mubayi, Zs. Tuza, V. Voloshin and D.B. West, The chromatic spectrum of mixed hypergraphs, Graphs Combin. 18 (2002) 309-318. doi:10.1007/s003730200023[Crossref]
- [11] L. Milazzo and Zs. Tuza, Upper chromatic number of Steiner triple and quadruple systems, Discrete Math. 174 (1997) 247-259. doi:10.1016/S0012-365X(97)80332-9[Crossref] Zbl0901.05012
- [12] L. Milazzo and Zs. Tuza, Strict colouring for classes of Steiner triple systems, Discrete Math. 182 (1998) 233-243. doi:10.1016/S0012-365X(97)00143-X[Crossref]
- [13] L. Milazzo, Zs. Tuza and V. Voloshin, Strict coloring of triple and quadruple Steiner systems: a survey, Discrete Math. 261 (2003) 399-411. doi:10.1016/S0012-365X(02)00485-5[Crossref] Zbl1008.05025
- [14] L. Milazzo and Zs. Tuza, Logarithmic upper bound for upper chromatic number of S(t, t + 1, v) systems, Ars Combin. 92 (2009) 213-223. Zbl1224.05183
- [15] I. Tomescu, Chromatic coefficients of linear uniform hypergraphs, J. Combin. Theory (B) 72 (1998) 229-235. doi:10.1006/jctb.1997.1811[WoS][Crossref]
- [16] V.I. Voloshin, The mixed hypergraphs, Comput. Sci. J. Moldova 1 (1993) 45-52.
- [17] V.I. Voloshin, On the upper chromatic number of a hypergraph, Australas. J. Combin. 11 (1995) 25-45. Zbl0827.05027
- [18] V.I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications (American Mathematical Society, Providence 2002). Zbl1001.05003
- [19] M.Walter, Some results on chromatic polynomials of hypergraphs, Electron. J. Combin. 16 (2009) #R94. Zbl1186.05059

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.