Exact Expectation and Variance of Minimal Basis of Random Matroids
Wojciech Kordecki; Anna Lyczkowska-Hanćkowiak
Discussiones Mathematicae Graph Theory (2013)
- Volume: 33, Issue: 2, page 277-288
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topWojciech Kordecki, and Anna Lyczkowska-Hanćkowiak. "Exact Expectation and Variance of Minimal Basis of Random Matroids." Discussiones Mathematicae Graph Theory 33.2 (2013): 277-288. <http://eudml.org/doc/267680>.
@article{WojciechKordecki2013,
abstract = {We formulate and prove a formula to compute the expected value of the minimal random basis of an arbitrary finite matroid whose elements are assigned weights which are independent and uniformly distributed on the interval [0, 1]. This method yields an exact formula in terms of the Tutte polynomial. We give a simple formula to find the minimal random basis of the projective geometry PG(r − 1, q).},
author = {Wojciech Kordecki, Anna Lyczkowska-Hanćkowiak},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {minimal basis; q-analog; finite projective geometry; Tutte polynomial; -analog},
language = {eng},
number = {2},
pages = {277-288},
title = {Exact Expectation and Variance of Minimal Basis of Random Matroids},
url = {http://eudml.org/doc/267680},
volume = {33},
year = {2013},
}
TY - JOUR
AU - Wojciech Kordecki
AU - Anna Lyczkowska-Hanćkowiak
TI - Exact Expectation and Variance of Minimal Basis of Random Matroids
JO - Discussiones Mathematicae Graph Theory
PY - 2013
VL - 33
IS - 2
SP - 277
EP - 288
AB - We formulate and prove a formula to compute the expected value of the minimal random basis of an arbitrary finite matroid whose elements are assigned weights which are independent and uniformly distributed on the interval [0, 1]. This method yields an exact formula in terms of the Tutte polynomial. We give a simple formula to find the minimal random basis of the projective geometry PG(r − 1, q).
LA - eng
KW - minimal basis; q-analog; finite projective geometry; Tutte polynomial; -analog
UR - http://eudml.org/doc/267680
ER -
References
top- [1] A. Beveridge, A. Frieze and C.J.H. McDiarmid, Random minimum length spanning trees in regular graphs, Combinatorica 18 (1998) 311-333. doi:10.1007/PL00009825[Crossref] Zbl0913.05085
- [2] T. Brylawski and J. Oxley, The Tutte polynomials and its applications, in: Encyclopedia of Mathematics and Its Applications, vol. 40, Matroid Applications, N. White (Ed(s)), (Cambridge University Press, 1992) 121-225. Zbl0769.05026
- [3] J.A. Fill and J.M. Steele, Exact expectation of minimal spanning trees for graphs with random edge weights, in: Stein’s Method and Applications, A. Barbour and L. Chen (Ed(s)), (World Publications, Singapore, 2005) 169-180.
- [4] A. Frieze, On the value of a random minimum spanning tree problem, Discrete Appl. Math. 10 (1985) 47-56. doi:10.1016/0166-218X(85)90058-7[Crossref]
- [5] A. Frieze and C.J.H. McDiarmid, On random minimum length spanning trees, Combinatorica 9 (1989) 363-374. doi:10.1007/BF02125348[Crossref] Zbl0712.05050
- [6] A. Frieze, M. Ruszink´o, and L. Thoma, A note on random minimum length spanning trees, Electron. J. Combin. 7 (2000) 1-5.
- [7] J.W.P. Hirschfeld, Projective Geometries over Finite Fields (Clarendom Press, Oxford, 1979). Zbl0418.51002
- [8] D.G. Kelly and J.G. Oxley, Asymptotic properties of random subsets of projective spaces, Math. Proc. Cambridge Philos. Soc. 91 (1982) 119-130. doi:10.1017/S0305004100059181[Crossref]
- [9] W. Kordecki, Random matroids, Dissertationes Math. CCCLXVII (1997). Zbl0934.05034
- [10] W. Kordecki and A. Lyczkowska-Han´ckowiak, Expected value of the minimal basis of random matroid and distributions of q-analogs of order statistics, Electron. Notes Discrete Math. 24 (2006) 117-123. doi:10.1016/j.endm.2006.06.020[Crossref] Zbl1202.05019
- [11] W. Kordecki and A. Lyczkowska-Han´ckowiak, q-analogs of order statistics, Probab. Math. Statist. 30 (2010) 207-214.
- [12] E.G. Mphako, Tutte polynomials of perfect matroid designs, Combin. Probab. Comput. 9 (2000) 363-367. doi:10.1017/S0963548300004338[Crossref] Zbl0964.05017
- [13] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).
- [14] J.G. Oxley. On the interplay between graphs and matroids, in: vol. 288 of London Math. Soc. Lecture Note Ser. (Cambridge University Press, 2001) 199-239. Zbl0979.05030
- [15] J.M. Steele, Minimal spanning trees for graphs with random edge lengths, in: Mathematics and Computer Science II: Algorithms, Trees, Combinatorics and Probabilities, B. Chauvin, P. Flajolet, D. Gardy, and A. Mokkadem (Ed(s)), (Birkh¨auser, Boston, 2002) 223-245. Zbl1032.60007
- [16] D.J.A. Welsh, Matroid Theory (Academic Press, London, 1976).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.