Continuity of the quenching time in a semilinear parabolic equation

Théodore Boni; Firmin N'Gohisse

Annales UMCS, Mathematica (2008)

  • Volume: 62, Issue: 1, page 37-48
  • ISSN: 2083-7402

Abstract

top
In this paper, we consider the following initial-boundary value problem [...] where Ω is a bounded domain in RN with smooth boundary ∂Ω, p > 0, Δ is the Laplacian, v is the exterior normal unit vector on ∂Ω. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the initial data u0. Finally, we give some numerical results to illustrate our analysis.

How to cite

top

Théodore Boni, and Firmin N'Gohisse. "Continuity of the quenching time in a semilinear parabolic equation." Annales UMCS, Mathematica 62.1 (2008): 37-48. <http://eudml.org/doc/267695>.

@article{ThéodoreBoni2008,
abstract = {In this paper, we consider the following initial-boundary value problem [...] where Ω is a bounded domain in RN with smooth boundary ∂Ω, p > 0, Δ is the Laplacian, v is the exterior normal unit vector on ∂Ω. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the initial data u0. Finally, we give some numerical results to illustrate our analysis.},
author = {Théodore Boni, Firmin N'Gohisse},
journal = {Annales UMCS, Mathematica},
keywords = {Quenching; nonlinear parabolic equation; numerical quenching time; quenching; dependence on initial data},
language = {eng},
number = {1},
pages = {37-48},
title = {Continuity of the quenching time in a semilinear parabolic equation},
url = {http://eudml.org/doc/267695},
volume = {62},
year = {2008},
}

TY - JOUR
AU - Théodore Boni
AU - Firmin N'Gohisse
TI - Continuity of the quenching time in a semilinear parabolic equation
JO - Annales UMCS, Mathematica
PY - 2008
VL - 62
IS - 1
SP - 37
EP - 48
AB - In this paper, we consider the following initial-boundary value problem [...] where Ω is a bounded domain in RN with smooth boundary ∂Ω, p > 0, Δ is the Laplacian, v is the exterior normal unit vector on ∂Ω. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the initial data u0. Finally, we give some numerical results to illustrate our analysis.
LA - eng
KW - Quenching; nonlinear parabolic equation; numerical quenching time; quenching; dependence on initial data
UR - http://eudml.org/doc/267695
ER -

References

top
  1. Abia, L. M., López-Marcos, J. C. and Martínez, J., On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math. 26 (1998), 399-414.[Crossref] Zbl0929.65070
  2. Acker, A., Walter, W., The quenching problem for nonlinear parabolic differential equations, Ordinary and partial differential equations (Proc. Fourth Conf., Univ. Dundee, Dundee, 1976), Lecture Notes in Math., Vol. 564, Springer, Berlin, 1976, 1-12. Zbl0338.35054
  3. Acker, A., Kawohl, B., Remarks on quenching, Nonlinear Anal. 13 (1989), 53-61. Zbl0676.35021
  4. Bandle, C., Braumer, C. M., Singular perturbation method in a parabolic problem with free boundary, BAIL IV (Novosibirsk, 1986), Boole Press Conf. Ser., 8, Boole, Dún Laoghaire, 1986, 7-14. 
  5. Baras, P., Cohen, L., Complete blow-up after Tmaxfor the solution of a semilinear heat equation, J. Funct. Anal. 71 (1987), 142-174.[Crossref] Zbl0653.35037
  6. Boni, T. K., Extinction for discretizations of some semilinear parabolic equations, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 795-800. Zbl0999.35004
  7. Boni, T. K., On quenching of solutions for some semilinear parabolic equations of second order, Bull. Belg. Math. Soc. 7 (2000), 73-95. Zbl0969.35077
  8. Cortazar, C., del Pino, M. and Elgueta, M., On the blow-up set for ut = Δum + um, m > 1, Indiana Univ. Math. J. 47 (1998), 541-561. Zbl0916.35056
  9. Cortazar, C., del Pino, M. and Elgueta, M., Uniqueness and stability of regional blow-up in a porous-medium equation, Ann. Inst. H. Poincaré Anal. Non Linéare 19 (2002), 927-960. Zbl1018.35062
  10. Deng, K., Levine, H. A, On the blow-up of ut at quenching, Proc. Amer. Math. Soc. 106 (1989), 1049-1056. Zbl0681.35008
  11. Deng, K., Xu, M., Quenching for a nonlinear diffusion equation with singular boundary condition, Z. Angew. Math. Phys. 50 (1999), 574-584.[Crossref] Zbl0929.35012
  12. Fermanian Kammerer, C., Merle, F. and Zaag, H., Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view, Math. Ann. 317 (2000), 195-237. Zbl0971.35038
  13. Fila, M., Kawohl, B. and Levine, H. A., Quenching for quasilinear equations, Comm. Partial Differential Equations 17 (1992), 593-614. Zbl0801.35057
  14. Fila, M., Levine, H. A., Quenching on the boundary, Nonlinear Anal. 21 (1993), 795-802. Zbl0809.35043
  15. Friedman, A., McLeod, B., Blow-up of positive solutions of nonlinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-477.[Crossref] Zbl0576.35068
  16. Galaktionov, V. A., Boundary value problems for the nonlinear parabolic equation ut = Δuσ+1 + uβ, Differential Equations 17 (1981), 551-555. Zbl0478.35058
  17. Galaktionov, V. A., Kurdjumov, S. P., Mihailov, A. P. and Samarskii, A. A., On unbounded solutions of the Cauchy problem for the parabolic equation ut = ∇(uσ∇u) + uβ, (Russian) Dokl. Akad. Nauk SSSR 252 (1980), no. 6, 1362-1364. 
  18. Galaktionov, V. A., Vazquez, J. L., Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math., 50 (1997), 1-67. Zbl0874.35057
  19. Galaktionov, V. A., Vazquez, J. L., The problem of blow-up in nonlinear parabolic equation, Current developments in partial differential equations (Temuco, 1999). Discrete Contin. Dyn. Syst. 8 (2002), 399-433. Zbl1010.35057
  20. Guo, J., On a quenching problem with Robin boundary condition, Nonlinear Anal. 17 (1991), 803-809. Zbl0762.35039
  21. Groisman, P., Rossi, J. D., Dependence of the blow-up time with respect to parameters and numerical approximations for a parabolic problem, Asymptot. Anal. 37 (2004), 79-91. Zbl1047.35064
  22. Groisman, P., Rossi, J. D. and Zaag, H., On the dependence of the blow-up time with respect to the initial data in a semilinear parabolic problem, Comm. Partial Differential Equations 28 (2003), 737-744. Zbl1036.35025
  23. Herrero, M. A., Velázquez, J. J. L., Generic behaviour of one-dimensional blow up patterns, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), no. 3, 381-450. Zbl0798.35081
  24. Kawarada, H., On solutions of initial-boundary problem for ut = uxx + 1/(1 - u), Publ. Res. Inst. Math. Sci. 10 (1974/75), 729-736.[Crossref] Zbl0306.35059
  25. Kirk, C. M., Roberts, C. A., A review of quenching results in the context of nonlinear Volterra equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 343-356. Zbl1030.35099
  26. Ladyzenskaya, A., Solonnikov, V. A. and Ural'ceva, N. N., Linear and quasilinear equations parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R. I., 1967. 
  27. Levine, H. A., The phenomenon of quenching: a survey, Trends in the theory and practice of nonlinear analysis (Arlington, Tex., 1984), North-Holland Math. Stud., 110, North-Holland, Amsterdam, 1985, 275-286. 
  28. Levine, H. A., The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions, SIAM J. Math. Anal. 14 (1983), 1139-1152. Zbl0538.35048
  29. Levine, H. A., Quenching, nonquenching and beyond quenching for solution of some parabolic equations, Ann. Math. Pura Appl. (4) 155 (1989), 243-260. Zbl0743.35010
  30. Merle, F., Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math. 45 (1992), 293-300. Zbl0785.35012
  31. Nakagawa, T., Blowing up of the finite difference solution to ut = uxx + u2, Appl. Math. Optim. 2 (1975/76), 337-350.[Crossref] 
  32. Phillips, D., Existence of solution of quenching problems, Appl. Anal. 24 (1987), 253-264.[Crossref] Zbl0633.35036
  33. Protter, M. H., Weinberger, H. F., Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1967. Zbl0153.13602
  34. Quittner, P., Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math. 29 (2003), no. 3, 757-799 (electronic). Zbl1034.35013
  35. Sheng, Q., Khaliq, A. Q. M., A compound adaptive approach to degenerate nonlinear quenching problems, Numer. Methods Partial Differential Equations, 15 (1999), 29-47. Zbl0931.65096
  36. Walter, W, Differential- und Integral-Ungleichungen und ihre Anwendung bei Abschätzungs- und Eindeutigkeits-problemen, (German) Springer Tracts in Natural Philosophy, Vol. 2, Springer-Verlag, Berlin-New York, 1964. Zbl0119.12205

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.