Continuity of the quenching time in a semilinear parabolic equation
Théodore Boni; Firmin N'Gohisse
Annales UMCS, Mathematica (2008)
- Volume: 62, Issue: 1, page 37-48
- ISSN: 2083-7402
Access Full Article
topAbstract
topHow to cite
topThéodore Boni, and Firmin N'Gohisse. "Continuity of the quenching time in a semilinear parabolic equation." Annales UMCS, Mathematica 62.1 (2008): 37-48. <http://eudml.org/doc/267695>.
@article{ThéodoreBoni2008,
abstract = {In this paper, we consider the following initial-boundary value problem [...] where Ω is a bounded domain in RN with smooth boundary ∂Ω, p > 0, Δ is the Laplacian, v is the exterior normal unit vector on ∂Ω. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the initial data u0. Finally, we give some numerical results to illustrate our analysis.},
author = {Théodore Boni, Firmin N'Gohisse},
journal = {Annales UMCS, Mathematica},
keywords = {Quenching; nonlinear parabolic equation; numerical quenching time; quenching; dependence on initial data},
language = {eng},
number = {1},
pages = {37-48},
title = {Continuity of the quenching time in a semilinear parabolic equation},
url = {http://eudml.org/doc/267695},
volume = {62},
year = {2008},
}
TY - JOUR
AU - Théodore Boni
AU - Firmin N'Gohisse
TI - Continuity of the quenching time in a semilinear parabolic equation
JO - Annales UMCS, Mathematica
PY - 2008
VL - 62
IS - 1
SP - 37
EP - 48
AB - In this paper, we consider the following initial-boundary value problem [...] where Ω is a bounded domain in RN with smooth boundary ∂Ω, p > 0, Δ is the Laplacian, v is the exterior normal unit vector on ∂Ω. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the initial data u0. Finally, we give some numerical results to illustrate our analysis.
LA - eng
KW - Quenching; nonlinear parabolic equation; numerical quenching time; quenching; dependence on initial data
UR - http://eudml.org/doc/267695
ER -
References
top- Abia, L. M., López-Marcos, J. C. and Martínez, J., On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math. 26 (1998), 399-414.[Crossref] Zbl0929.65070
- Acker, A., Walter, W., The quenching problem for nonlinear parabolic differential equations, Ordinary and partial differential equations (Proc. Fourth Conf., Univ. Dundee, Dundee, 1976), Lecture Notes in Math., Vol. 564, Springer, Berlin, 1976, 1-12. Zbl0338.35054
- Acker, A., Kawohl, B., Remarks on quenching, Nonlinear Anal. 13 (1989), 53-61. Zbl0676.35021
- Bandle, C., Braumer, C. M., Singular perturbation method in a parabolic problem with free boundary, BAIL IV (Novosibirsk, 1986), Boole Press Conf. Ser., 8, Boole, Dún Laoghaire, 1986, 7-14.
- Baras, P., Cohen, L., Complete blow-up after Tmaxfor the solution of a semilinear heat equation, J. Funct. Anal. 71 (1987), 142-174.[Crossref] Zbl0653.35037
- Boni, T. K., Extinction for discretizations of some semilinear parabolic equations, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 795-800. Zbl0999.35004
- Boni, T. K., On quenching of solutions for some semilinear parabolic equations of second order, Bull. Belg. Math. Soc. 7 (2000), 73-95. Zbl0969.35077
- Cortazar, C., del Pino, M. and Elgueta, M., On the blow-up set for ut = Δum + um, m > 1, Indiana Univ. Math. J. 47 (1998), 541-561. Zbl0916.35056
- Cortazar, C., del Pino, M. and Elgueta, M., Uniqueness and stability of regional blow-up in a porous-medium equation, Ann. Inst. H. Poincaré Anal. Non Linéare 19 (2002), 927-960. Zbl1018.35062
- Deng, K., Levine, H. A, On the blow-up of ut at quenching, Proc. Amer. Math. Soc. 106 (1989), 1049-1056. Zbl0681.35008
- Deng, K., Xu, M., Quenching for a nonlinear diffusion equation with singular boundary condition, Z. Angew. Math. Phys. 50 (1999), 574-584.[Crossref] Zbl0929.35012
- Fermanian Kammerer, C., Merle, F. and Zaag, H., Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view, Math. Ann. 317 (2000), 195-237. Zbl0971.35038
- Fila, M., Kawohl, B. and Levine, H. A., Quenching for quasilinear equations, Comm. Partial Differential Equations 17 (1992), 593-614. Zbl0801.35057
- Fila, M., Levine, H. A., Quenching on the boundary, Nonlinear Anal. 21 (1993), 795-802. Zbl0809.35043
- Friedman, A., McLeod, B., Blow-up of positive solutions of nonlinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-477.[Crossref] Zbl0576.35068
- Galaktionov, V. A., Boundary value problems for the nonlinear parabolic equation ut = Δuσ+1 + uβ, Differential Equations 17 (1981), 551-555. Zbl0478.35058
- Galaktionov, V. A., Kurdjumov, S. P., Mihailov, A. P. and Samarskii, A. A., On unbounded solutions of the Cauchy problem for the parabolic equation ut = ∇(uσ∇u) + uβ, (Russian) Dokl. Akad. Nauk SSSR 252 (1980), no. 6, 1362-1364.
- Galaktionov, V. A., Vazquez, J. L., Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math., 50 (1997), 1-67. Zbl0874.35057
- Galaktionov, V. A., Vazquez, J. L., The problem of blow-up in nonlinear parabolic equation, Current developments in partial differential equations (Temuco, 1999). Discrete Contin. Dyn. Syst. 8 (2002), 399-433. Zbl1010.35057
- Guo, J., On a quenching problem with Robin boundary condition, Nonlinear Anal. 17 (1991), 803-809. Zbl0762.35039
- Groisman, P., Rossi, J. D., Dependence of the blow-up time with respect to parameters and numerical approximations for a parabolic problem, Asymptot. Anal. 37 (2004), 79-91. Zbl1047.35064
- Groisman, P., Rossi, J. D. and Zaag, H., On the dependence of the blow-up time with respect to the initial data in a semilinear parabolic problem, Comm. Partial Differential Equations 28 (2003), 737-744. Zbl1036.35025
- Herrero, M. A., Velázquez, J. J. L., Generic behaviour of one-dimensional blow up patterns, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), no. 3, 381-450. Zbl0798.35081
- Kawarada, H., On solutions of initial-boundary problem for ut = uxx + 1/(1 - u), Publ. Res. Inst. Math. Sci. 10 (1974/75), 729-736.[Crossref] Zbl0306.35059
- Kirk, C. M., Roberts, C. A., A review of quenching results in the context of nonlinear Volterra equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 343-356. Zbl1030.35099
- Ladyzenskaya, A., Solonnikov, V. A. and Ural'ceva, N. N., Linear and quasilinear equations parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R. I., 1967.
- Levine, H. A., The phenomenon of quenching: a survey, Trends in the theory and practice of nonlinear analysis (Arlington, Tex., 1984), North-Holland Math. Stud., 110, North-Holland, Amsterdam, 1985, 275-286.
- Levine, H. A., The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions, SIAM J. Math. Anal. 14 (1983), 1139-1152. Zbl0538.35048
- Levine, H. A., Quenching, nonquenching and beyond quenching for solution of some parabolic equations, Ann. Math. Pura Appl. (4) 155 (1989), 243-260. Zbl0743.35010
- Merle, F., Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math. 45 (1992), 293-300. Zbl0785.35012
- Nakagawa, T., Blowing up of the finite difference solution to ut = uxx + u2, Appl. Math. Optim. 2 (1975/76), 337-350.[Crossref]
- Phillips, D., Existence of solution of quenching problems, Appl. Anal. 24 (1987), 253-264.[Crossref] Zbl0633.35036
- Protter, M. H., Weinberger, H. F., Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1967. Zbl0153.13602
- Quittner, P., Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math. 29 (2003), no. 3, 757-799 (electronic). Zbl1034.35013
- Sheng, Q., Khaliq, A. Q. M., A compound adaptive approach to degenerate nonlinear quenching problems, Numer. Methods Partial Differential Equations, 15 (1999), 29-47. Zbl0931.65096
- Walter, W, Differential- und Integral-Ungleichungen und ihre Anwendung bei Abschätzungs- und Eindeutigkeits-problemen, (German) Springer Tracts in Natural Philosophy, Vol. 2, Springer-Verlag, Berlin-New York, 1964. Zbl0119.12205
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.