L(2, 1)-Labelings of Some Families of Oriented Planar Graphs

Sagnik Sen

Discussiones Mathematicae Graph Theory (2014)

  • Volume: 34, Issue: 1, page 31-48
  • ISSN: 2083-5892

Abstract

top
In this paper we determine, or give lower and upper bounds on, the 2-dipath and oriented L(2, 1)-span of the family of planar graphs, planar graphs with girth 5, 11, 16, partial k-trees, outerplanar graphs and cacti.

How to cite

top

Sagnik Sen. "L(2, 1)-Labelings of Some Families of Oriented Planar Graphs." Discussiones Mathematicae Graph Theory 34.1 (2014): 31-48. <http://eudml.org/doc/267731>.

@article{SagnikSen2014,
abstract = {In this paper we determine, or give lower and upper bounds on, the 2-dipath and oriented L(2, 1)-span of the family of planar graphs, planar graphs with girth 5, 11, 16, partial k-trees, outerplanar graphs and cacti.},
author = {Sagnik Sen},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {2-dipath L(2; 1)-labeling; oriented L(2; 1)-labeling; homomorphism; planar graph; girth; partial k-tree; outerplanar graph; cactus; 2-dipath; -labeling; oriented -labeling; partial -tree},
language = {eng},
number = {1},
pages = {31-48},
title = {L(2, 1)-Labelings of Some Families of Oriented Planar Graphs},
url = {http://eudml.org/doc/267731},
volume = {34},
year = {2014},
}

TY - JOUR
AU - Sagnik Sen
TI - L(2, 1)-Labelings of Some Families of Oriented Planar Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 1
SP - 31
EP - 48
AB - In this paper we determine, or give lower and upper bounds on, the 2-dipath and oriented L(2, 1)-span of the family of planar graphs, planar graphs with girth 5, 11, 16, partial k-trees, outerplanar graphs and cacti.
LA - eng
KW - 2-dipath L(2; 1)-labeling; oriented L(2; 1)-labeling; homomorphism; planar graph; girth; partial k-tree; outerplanar graph; cactus; 2-dipath; -labeling; oriented -labeling; partial -tree
UR - http://eudml.org/doc/267731
ER -

References

top
  1. [1] K.I. Aardal, S.P.M. van Hoesel, A.M.C.A. Koster, C. Mannino and A. Sassano, Models and solution techniques for frequency assignment problems, Ann. Oper. Res. 153 (2007) 79-129. doi:10.1007/s10479-007-0178-0[WoS][Crossref] Zbl1157.90005
  2. [2] T. Calamoneri and B. Sinaimeri, L(2, 1)-labeling of oriented planar graphs, Discrete Appl. Math. 161 (2013) 1719-1725. doi:10.1016/j.dam.2012.07.009[Crossref][WoS] Zbl1287.05132
  3. [3] G.J. Chang, J.J Chen, D. Kuo and S.C. Liaw, Distance-two labelings of digraphs, Discrete Appl. Math. 155 (2007) 1007-1013. doi:10.1016/j.dam.2006.11.001[Crossref][WoS] Zbl1129.05040
  4. [4] J.P. Georges and D.W. Mauro, Generalized vertex labelings with a condition at distance two, Congr. Numer. (1995) 141-160.[WoS] Zbl0904.05077
  5. [5] D. Gonçalves, M.A. Shalu and A. Raspaud, On oriented labelling parameters, Formal Models, Languages and Applications 66 (2006) 34-45. doi:10.1142/9789812773036 0003[Crossref] 
  6. [6] J.R. Griggs and R.K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586-595. doi:10.1137/0405048[Crossref] 
  7. [7] P. Hell, A.V. Kostochka, A. Raspaud and E. Sopena, On nice graphs, Discrete Math. 234 (2001) 39-51. doi:10.1016/S0012-365X(00)00190-4[Crossref] Zbl0990.05058
  8. [8] T.H. Marshall, Homomorphism bounds for oriented planar graphs, J. Graph Theory 55 (2007) 175-190. doi:10.1002/jgt.20233[WoS][Crossref] Zbl1120.05039
  9. [9] A. Pinlou, An oriented coloring of planar graphs with girth at least five, Discrete Math. 309 (2009) 2108-2118. doi:10.1016/j.disc.2008.04.030[Crossref] 
  10. [10] A. Raspaud and E. Sopena, Good and semi-strong colorings of oriented planar graphs, Inform. Process. Lett. 51 (1994) 171-174. doi:10.1016/0020-0190(94)00088-3[Crossref] Zbl0806.05031
  11. [11] E. Sopena, The chromatic number of oriented graphs, J. Graph Theory 25 (1997) 191-205. doi:10.1002/(SICI)1097-0118(199707)25:3h191::AID-JGT3i3.0.CO;2-G[Crossref] 
  12. [12] E. Sopena, Oriented graph coloring, Discrete Math. 229 (2001) 359-369. doi:10.1016/S0012-365X(00)00216-8[Crossref] 
  13. [13] E. Sopena, There exist oriented planar graphs with oriented chromatic number at least sixteen, Inform. Process. Lett. 81 (2002) 309-312. doi:10.1016/S0020-0190(01)00246-0[Crossref] 
  14. [14] J. van Leeuwen, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (Elsevier and MIT Press, 1990). Zbl0712.68054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.