Borel-Cantelli Lemma
Formalized Mathematics (2011)
- Volume: 19, Issue: 4, page 227-232
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topPeter Jaeger. "Borel-Cantelli Lemma." Formalized Mathematics 19.4 (2011): 227-232. <http://eudml.org/doc/267735>.
@article{PeterJaeger2011,
abstract = {This article is about the Borel-Cantelli Lemma in probability theory. Necessary definitions and theorems are given in [10] and [7].},
author = {Peter Jaeger},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {227-232},
title = {Borel-Cantelli Lemma},
url = {http://eudml.org/doc/267735},
volume = {19},
year = {2011},
}
TY - JOUR
AU - Peter Jaeger
TI - Borel-Cantelli Lemma
JO - Formalized Mathematics
PY - 2011
VL - 19
IS - 4
SP - 227
EP - 232
AB - This article is about the Borel-Cantelli Lemma in probability theory. Necessary definitions and theorems are given in [10] and [7].
LA - eng
UR - http://eudml.org/doc/267735
ER -
References
top- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- Fuguo Ge and Xiquan Liang. On the partial product of series and related basic inequalities. Formalized Mathematics, 13(3):413-416, 2005.
- Hans-Otto Georgii. Stochastik, Einführung in die Wahrscheinlichkeitstheorie und Statistik. deGruyter, Berlin, 2 edition, 2004.
- Adam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399-409, 2003.
- Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- Achim Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, 2006.
- Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
- Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
- Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
- Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.
- Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
- Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.
- Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Limit of sequence of subsets. Formalized Mathematics, 13(2):347-352, 2005.
- Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. Formalized Mathematics, 13(4):435-441, 2005.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.