Borel-Cantelli Lemma

Peter Jaeger

Formalized Mathematics (2011)

  • Volume: 19, Issue: 4, page 227-232
  • ISSN: 1426-2630

Abstract

top
This article is about the Borel-Cantelli Lemma in probability theory. Necessary definitions and theorems are given in [10] and [7].

How to cite

top

Peter Jaeger. "Borel-Cantelli Lemma." Formalized Mathematics 19.4 (2011): 227-232. <http://eudml.org/doc/267735>.

@article{PeterJaeger2011,
abstract = {This article is about the Borel-Cantelli Lemma in probability theory. Necessary definitions and theorems are given in [10] and [7].},
author = {Peter Jaeger},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {227-232},
title = {Borel-Cantelli Lemma},
url = {http://eudml.org/doc/267735},
volume = {19},
year = {2011},
}

TY - JOUR
AU - Peter Jaeger
TI - Borel-Cantelli Lemma
JO - Formalized Mathematics
PY - 2011
VL - 19
IS - 4
SP - 227
EP - 232
AB - This article is about the Borel-Cantelli Lemma in probability theory. Necessary definitions and theorems are given in [10] and [7].
LA - eng
UR - http://eudml.org/doc/267735
ER -

References

top
  1. Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  2. Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  3. Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  4. Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  5. Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  6. Fuguo Ge and Xiquan Liang. On the partial product of series and related basic inequalities. Formalized Mathematics, 13(3):413-416, 2005. 
  7. Hans-Otto Georgii. Stochastik, Einführung in die Wahrscheinlichkeitstheorie und Statistik. deGruyter, Berlin, 2 edition, 2004. 
  8. Adam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399-409, 2003. 
  9. Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  10. Achim Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, 2006. 
  11. Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990. 
  12. Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990. 
  13. Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991. 
  14. Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990. 
  15. Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990. 
  16. Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991. 
  17. Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997. 
  18. Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  19. Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998. 
  20. Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Limit of sequence of subsets. Formalized Mathematics, 13(2):347-352, 2005. 
  21. Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. Formalized Mathematics, 13(4):435-441, 2005. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.