Smallest Regular Graphs of Given Degree and Diameter

Martin Knor

Discussiones Mathematicae Graph Theory (2014)

  • Volume: 34, Issue: 1, page 187-191
  • ISSN: 2083-5892

Abstract

top
In this note we present a sharp lower bound on the number of vertices in a regular graph of given degree and diameter.

How to cite

top

Martin Knor. "Smallest Regular Graphs of Given Degree and Diameter." Discussiones Mathematicae Graph Theory 34.1 (2014): 187-191. <http://eudml.org/doc/267745>.

@article{MartinKnor2014,
abstract = {In this note we present a sharp lower bound on the number of vertices in a regular graph of given degree and diameter.},
author = {Martin Knor},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {regular graph; degree/diameter problem; extremal graph},
language = {eng},
number = {1},
pages = {187-191},
title = {Smallest Regular Graphs of Given Degree and Diameter},
url = {http://eudml.org/doc/267745},
volume = {34},
year = {2014},
}

TY - JOUR
AU - Martin Knor
TI - Smallest Regular Graphs of Given Degree and Diameter
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 1
SP - 187
EP - 191
AB - In this note we present a sharp lower bound on the number of vertices in a regular graph of given degree and diameter.
LA - eng
KW - regular graph; degree/diameter problem; extremal graph
UR - http://eudml.org/doc/267745
ER -

References

top
  1. [1] E. Bannai and T. Ito, On finite Moore graphs, J. Fac. Sci. Tokyo Univ. 20 (1973) 191-208. Zbl0275.05121
  2. [2] E. Bannai and T. Ito, Regular graphs with excess one, Discrete Math. 37 (1981) 147-158. doi:10.1016/0012-365X(81)90215-6[Crossref] 
  3. [3] R.M. Damerell, On Moore graphs, Proc. Cambridge Philos. Soc. 74 (1973) 227-236. doi:10.1017/S0305004100048015[Crossref] Zbl0262.05132
  4. [4] P. Erdös, S. Fajtlowicz and A.J. Hoffman, Maximum degree in graphs of diameter 2, Networks 10 (1980) 87-90. doi:10.1002/net.3230100109 Zbl0427.05042
  5. [5] A.J. Hoffman and R.R. Singleton, On Moore graphs with diameter 2 and 3, IBM J. Res. Develop. 4 (1960) 497-504. doi:10.1147/rd.45.0497[Crossref] Zbl0096.38102
  6. [6] M. Knor and J. Širáň, Smallest vertex-transitive graphs of given degree and diameter, J. Graph Theory, (to appear).[WoS] Zbl1280.05066
  7. [7] M. Miller and J. Širáň, Moore graphs and beyond: A survey of the degree-diameter problem, Electron. J. Combin., Dynamic survey No. D14 (2005), 61pp. Zbl1079.05043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.