On the Non-(p−1)-Partite Kp-Free Graphs

Kinnari Amin; Jill Faudree; Ronald J. Gould; Elżbieta Sidorowicz

Discussiones Mathematicae Graph Theory (2013)

  • Volume: 33, Issue: 1, page 9-23
  • ISSN: 2083-5892

Abstract

top
We say that a graph G is maximal Kp-free if G does not contain Kp but if we add any new edge e ∈ E(G) to G, then the graph G + e contains Kp. We study the minimum and maximum size of non-(p − 1)-partite maximal Kp-free graphs with n vertices. We also answer the interpolation question: for which values of n and m are there any n-vertex maximal Kp-free graphs of size m?

How to cite

top

Kinnari Amin, et al. "On the Non-(p−1)-Partite Kp-Free Graphs." Discussiones Mathematicae Graph Theory 33.1 (2013): 9-23. <http://eudml.org/doc/267782>.

@article{KinnariAmin2013,
abstract = {We say that a graph G is maximal Kp-free if G does not contain Kp but if we add any new edge e ∈ E(G) to G, then the graph G + e contains Kp. We study the minimum and maximum size of non-(p − 1)-partite maximal Kp-free graphs with n vertices. We also answer the interpolation question: for which values of n and m are there any n-vertex maximal Kp-free graphs of size m?},
author = {Kinnari Amin, Jill Faudree, Ronald J. Gould, Elżbieta Sidorowicz},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {extremal problems; maximal Kp-free graphs; Kp-saturated graphs; maximal -free graphs; -saturated graphs},
language = {eng},
number = {1},
pages = {9-23},
title = {On the Non-(p−1)-Partite Kp-Free Graphs},
url = {http://eudml.org/doc/267782},
volume = {33},
year = {2013},
}

TY - JOUR
AU - Kinnari Amin
AU - Jill Faudree
AU - Ronald J. Gould
AU - Elżbieta Sidorowicz
TI - On the Non-(p−1)-Partite Kp-Free Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2013
VL - 33
IS - 1
SP - 9
EP - 23
AB - We say that a graph G is maximal Kp-free if G does not contain Kp but if we add any new edge e ∈ E(G) to G, then the graph G + e contains Kp. We study the minimum and maximum size of non-(p − 1)-partite maximal Kp-free graphs with n vertices. We also answer the interpolation question: for which values of n and m are there any n-vertex maximal Kp-free graphs of size m?
LA - eng
KW - extremal problems; maximal Kp-free graphs; Kp-saturated graphs; maximal -free graphs; -saturated graphs
UR - http://eudml.org/doc/267782
ER -

References

top
  1. [1] N. Alon, P. Erdős, R. Holzman and M. Krivelevich, On k-saturated graphs with restrictions on the degrees, J. Graph Theory 23(1996) 1-20. doi:10.1002/(SICI)1097-0118(199609)23:1h1::AID-JGT1i3.0.CO;2-O[Crossref] Zbl0857.05051
  2. [2] K. Amin, J.R. Faudree and R.J. Gould, The edge spectrum of K4-saturated graphs, J. Combin. Math. Combin. Comp. 81 (2012) 233-242. Zbl1252.05184
  3. [3] C. Barefoot, K. Casey, D. Fisher, K. Fraughnaugh and F. Harary, Size in maximal triangle-free graphs and minimal graphs of diameter 2, Discrete Math. 138 (1995) 93-99. doi:10.1016/0012-365X(94)00190-T[Crossref] Zbl0821.05031
  4. [4] G. Chartrand and L. Lesniak, Graphs and Digraphs, Second Edition, (Wadsworth & Brooks/Cole, Monterey, 1986). Zbl0666.05001
  5. [5] P. Erdős, A. Hajnal and J.W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964) 1107-1110. doi:10.2307/2311408[Crossref] 
  6. [6] P. Erdős and R. Holzman, On maximal triangle-free graphs, J. Graph Theory 18 (1994) 585-594. Zbl0807.05040
  7. [7] D.A. Duffus and D. Hanson, Minimal k-saturated and color critical graphs of prescribed minimum degree, J. Graph Theory 10 (1986) 55-67. doi:10.1002/jgt.3190100109[Crossref] Zbl0593.05040
  8. [8] Z. Füredi and Á. Seress, Maximal triangle-free graphs with restrictions on the degree, J. Graph Theory 18 (1994) 11-24. 
  9. [9] A. Hajnal, A theorem on k-saturated graphs, Canad. J. Math. 17(1965) 720-724. doi:10.4153/CJM-1965-072-1[Crossref] Zbl0129.39901
  10. [10] U.S.R. Murty, Extremal nonseparable graphs of diameter two, in: F. Harary ed., Proof Techniques in Graph Theory (Academic Press, New York, 1969) 111-117. 
  11. [11] E. Sidorowicz, Size of C3-saturated graphs, Zeszyty Naukowe Politechniki Rzeszowskiej 118 (1993) 61-66. Zbl0853.05052
  12. [12] P. Turan, An extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.