Horizontal lift of symmetric connections to the bundle of volume forms ν

Anna Gąsior

Annales UMCS, Mathematica (2010)

  • Volume: 64, Issue: 1, page 45-61
  • ISSN: 2083-7402

Abstract

top
In this paper we present the horizontal lift of a symmetric affine connection with respect to another affine connection to the bundle of volume forms ν and give formulas for its curvature tensor, Ricci tensor and the scalar curvature. Next, we give some properties of the horizontally lifted vector fields and certain infinitesimal transformations. At the end, we consider some substructures of a F(3, 1)-structure on ν.

How to cite

top

Anna Gąsior. " Horizontal lift of symmetric connections to the bundle of volume forms ν ." Annales UMCS, Mathematica 64.1 (2010): 45-61. <http://eudml.org/doc/267845>.

@article{AnnaGąsior2010,
abstract = {In this paper we present the horizontal lift of a symmetric affine connection with respect to another affine connection to the bundle of volume forms ν and give formulas for its curvature tensor, Ricci tensor and the scalar curvature. Next, we give some properties of the horizontally lifted vector fields and certain infinitesimal transformations. At the end, we consider some substructures of a F(3, 1)-structure on ν.},
author = {Anna Gąsior},
journal = {Annales UMCS, Mathematica},
keywords = {Horizontal lift; π-conjugate connection; Killing field; infinitesimal transformation; F(3; 1)-structure; FK; FAK; FNK; FQK; FH-structure; horizontal lift; -conjugate connection; -structure},
language = {eng},
number = {1},
pages = {45-61},
title = { Horizontal lift of symmetric connections to the bundle of volume forms ν },
url = {http://eudml.org/doc/267845},
volume = {64},
year = {2010},
}

TY - JOUR
AU - Anna Gąsior
TI - Horizontal lift of symmetric connections to the bundle of volume forms ν
JO - Annales UMCS, Mathematica
PY - 2010
VL - 64
IS - 1
SP - 45
EP - 61
AB - In this paper we present the horizontal lift of a symmetric affine connection with respect to another affine connection to the bundle of volume forms ν and give formulas for its curvature tensor, Ricci tensor and the scalar curvature. Next, we give some properties of the horizontally lifted vector fields and certain infinitesimal transformations. At the end, we consider some substructures of a F(3, 1)-structure on ν.
LA - eng
KW - Horizontal lift; π-conjugate connection; Killing field; infinitesimal transformation; F(3; 1)-structure; FK; FAK; FNK; FQK; FH-structure; horizontal lift; -conjugate connection; -structure
UR - http://eudml.org/doc/267845
ER -

References

top
  1. do Carmo, M. P., Riemannian Geometry, Graduate Texts in Mathematics 166, Birkhäuser Boston Inc., Boston Ma., 1992. 
  2. Das, L. S., Complete lifts of a structure satisfying FK - (-1)K+1 = 0, Internat. J. Math. Math. Sci. 15 (1992), 803-808. Zbl0781.53026
  3. Dhooghe, P. F., The T. Y. Thomas construction of projectively related manifolds, Geom. Dedicata, 55 (1995), 221-235. Zbl0839.53010
  4. Dhooghe, P. F., Van Vlierden A., Projective geometry on the bundle of volume forms, J. Geom. 62 (1998), 66-83. Zbl1006.53014
  5. Gąsior, A., Curvatures for horizontal lift of Riemannian metric, Ann. Univ. Mariae Curie-Skłodowska Sect. A 60 (2006), 17-21. Zbl1136.53012
  6. Ishihara, S., Yano, K., Structure defined by f satisfying f3+f = 0, Proc. U. S.-Japan Seminar in Differential Geometry (Kyoto, 1965) pp. 153-166 Nippon Hyoronsha, Tokyo, 1966. 
  7. Kobayashi. S., Nomizu, K., Foundations of Differential Geometry, John Wiley & Sons, New York-London, 1969. Zbl0175.48504
  8. Molino, P., Riemannian Foliations, Progression Mathematics, 73, Birkhäuser Boston Inc., Boston Ma., 1988. Zbl0824.53028
  9. Miernowski A., Mozgawa W., Horizontal Lift to the Bundle of Volume Forms, Ann. Univ. Mariae Curie-Skłodowska Sect. A 57 (2003), 69-75. 
  10. Norden, A. P., Spaces with Affine Connection, Izdat. Nauka, Moscow, 1976 (Russian). Zbl0925.53007
  11. Radziszewski, K., π-geodesics and lines of shadow, Colloq. Math. 26 (1972), 157-163. Zbl0249.53010
  12. Rompała, W., Liftings of π-conjugate connections, Ann. Univ. Mariae Curie-Skłodowska Sect. A 32 (1978), 109-126. Zbl0466.53005
  13. Schouten, J. A., Ricci-Calculus, 2nd ed., Springer-Verlag, Berlin, Göttingen, Heidelberg, 1954. 
  14. Singh, K. D., Singh, R., Some f(3, ε)-structure manifolds, Demonstratio Math. 10 (1977), 637-645. Zbl0371.53030
  15. Yamauchi, K., On Riemannian manifolds admitting infinitesimal projective transformations, Hokkaido Math. J. 16 (1987), 115-125. Zbl0629.53040
  16. Yano, K., On structure defined by tensor field f of type (1, 1) satisfying f3 + f = 0, Tensor (N.S) 14 (1963), 99-109. Zbl0122.40705

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.