Families of triples with high minimum degree are hamiltonian

Vojtech Rödl; Andrzej Ruciński

Discussiones Mathematicae Graph Theory (2014)

  • Volume: 34, Issue: 2, page 361-381
  • ISSN: 2083-5892

Abstract

top
In this paper we show that every family of triples, that is, a 3-uniform hypergraph, with minimum degree at least [...] contains a tight Hamiltonian cycle

How to cite

top

Vojtech Rödl, and Andrzej Ruciński. "Families of triples with high minimum degree are hamiltonian." Discussiones Mathematicae Graph Theory 34.2 (2014): 361-381. <http://eudml.org/doc/267869>.

@article{VojtechRödl2014,
abstract = {In this paper we show that every family of triples, that is, a 3-uniform hypergraph, with minimum degree at least [...] contains a tight Hamiltonian cycle},
author = {Vojtech Rödl, Andrzej Ruciński},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {3-uniform hypergraph; Hamilton cycle; minimum vertex degree},
language = {eng},
number = {2},
pages = {361-381},
title = {Families of triples with high minimum degree are hamiltonian},
url = {http://eudml.org/doc/267869},
volume = {34},
year = {2014},
}

TY - JOUR
AU - Vojtech Rödl
AU - Andrzej Ruciński
TI - Families of triples with high minimum degree are hamiltonian
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 2
SP - 361
EP - 381
AB - In this paper we show that every family of triples, that is, a 3-uniform hypergraph, with minimum degree at least [...] contains a tight Hamiltonian cycle
LA - eng
KW - 3-uniform hypergraph; Hamilton cycle; minimum vertex degree
UR - http://eudml.org/doc/267869
ER -

References

top
  1. [1] R. Aharoni, A. Georgakopoulos and P. Sprüssel, Perfect matchings in r-partite r- graphs, European J. Combin. 30 (2009) 39-42. doi:10.1016/j.ejc.2008.02.011[Crossref][WoS] Zbl1204.05072
  2. [2] E. Buss, H. H`an and M. Schacht, Minimum vertex degree conditions for loose Hamil- ton cycles in 3-uniform hypergraphs, J. Combin. Theory (B), to appear. Zbl1274.05335
  3. [3] R. Glebov, Y. Person andW.Weps, On extremal hypergraphs for hamiltonian cycles, European J. Combin. 33 (2012) 544-555 (An extended abstract has appeared in the Proceedings of EuroComb 2011). doi:10.1016/j.ejc.2011.10.003[Crossref] Zbl1237.05142
  4. [4] H. Hàn, Y. Person and M. Schacht, On perfect matchings in uniform hypergraphs with large minimum vertex degree, SIAM J. Discrete Math. 23 (2009) 732-748. doi:10.1137/080729657[Crossref][WoS] Zbl1191.05074
  5. [5] H. Hàn and M. Schacht, Dirac-type results for loose Hamilton cycles in uniform hypergraphs, J. Combin. Theory (B) 100 (2010) 332-346. doi:10.1016/j.jctb.2009.10.002[Crossref] Zbl1209.05161
  6. [6] S. Janson, T. Luczak and A. Ruci´nski, Random Graphs (John Wiley and Sons, New York, 2000). doi:10.1002/9781118032718[Crossref] 
  7. [7] G.Y. Katona and H.A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999) 205-212. doi:10.1002/(SICI)1097-0118(199903)30:3h205::AID-JGT5i3.0.CO;2-O[Crossref] Zbl0924.05050
  8. [8] P. Keevash, D. Kühn, R. Mycroft and D. Osthus, Loose Hamilton cycles in hyper- graphs, Discrete Math. 311 (2011) 544-559. doi:10.1016/j.disc.2010.11.013[Crossref] Zbl1226.05187
  9. [9] I. Khan, Perfect matching in 3-uniform hypergraphs with large vertex degree, SIAM J. Discrete Math. 27 (2013) 1021-1039. doi:10.1137/10080796X[Crossref][WoS] Zbl1272.05160
  10. [10] D. Kühn, R. Mycroft and D. Osthus, Hamilton l-cycles in uniform hypergraphs, J. ombin. Theory (A) 117 (2010) 910-927. doi:10.1016/j.jcta.2010.02.010[WoS][Crossref] Zbl1219.05107
  11. [11] D. Kühn and D. Osthus, Matchings in hypergraphs of large minimum degree, J. raph Theory 51 (2006) 269-280. doi:10.1002/jgt.20139[Crossref] Zbl1087.05041
  12. [12] D. Kühn and D. Osthus, Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree, J. Combin. Theory (B) 96 (2006) 767-821. doi:10.1016/j.jctb.2006.02.004[Crossref] Zbl1109.05065
  13. [13] D. Kühn, D. Osthus and A. Treglown, Matchings in 3-uniform hypergraphs, J. Com- bin. Theory (B) 103 (2013) 291-305. doi:10.1016/j.jctb.2012.11.005[Crossref] Zbl1262.05128
  14. [14] O. Pikhurko, Perfect matchings and K3 4 -tilings in hypergraphs of large codegree, Graphs Combin. 24 (2008) 391-404. doi:10.1007/s00373-008-0787-7[Crossref] Zbl1205.05184
  15. [15] V. Rödl and A. Ruciński, Dirac-type questions for hypergraphs-a survey (or more problems for Endre to solve), An Irregular Mind (Szemer´edi is 70), Bolyai Soc. Math. tud. 21 (2010) 561-590. Zbl1221.05255
  16. [16] V. Rödl, A. Ruciński and E. Szemer´edi, A Dirac-type theorem for 3-uniform hyper- graphs, Combin. Probab. Comput. 15 (2006) 229-251. doi:10.1017/S0963548305007042[Crossref] 
  17. [17] V. Rödl, A. Ruciński and E. Szemer´edi, Perfect matchings in uniform hypergraphs with large minimum degree, European. J. Combin. 27 (2006) 1333-1349. doi:10.1016/j.ejc.2006.05.008[Crossref] Zbl1104.05051
  18. [18] V. Rödl, A. Ruciński and E. Szemer´edi, An approximate Dirac-type theorem for k- uniform hypergraphs, Combinatorica 28 (2008) 229-260. doi:10.1007/s00493-008-2295-z[Crossref][WoS] Zbl1164.05051
  19. [19] V. Rödl, A. Ruciński and E. Szemer´edi, Perfect matchings in large uniform hyper- graphs with large minimum collective degree, J. Combin. Theory (A) 116 (2009) 613-636. doi:10.1016/j.jcta.2008.10.002[Crossref] 
  20. [20] V. Rödl, A. Ruciński and E. Szemer´edi, Dirac-type conditions for hamiltonian paths and cycles in 3-uniform hypergraphs, Adv. Math. 227 (2011) 1225-1299. doi:10.1016/j.aim.2011.03.007[WoS][Crossref] 
  21. [21] V. Rödl, A. Ruciński, M. Schacht and E. Szemerédi, A note on perfect matchings in uniform hypergraphs with large minimum collective degree, Comment. Math. Univ. arolin. 49 (2008) 633-636. Zbl1212.05215

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.