The Path-Distance-Width of Hypercubes

Yota Otachi

Discussiones Mathematicae Graph Theory (2013)

  • Volume: 33, Issue: 2, page 467-470
  • ISSN: 2083-5892

Abstract

top
The path-distance-width of a connected graph G is the minimum integer w satisfying that there is a nonempty subset of S ⊆ V (G) such that the number of the vertices with distance i from S is at most w for any nonnegative integer i. In this note, we determine the path-distance-width of hypercubes.

How to cite

top

Yota Otachi. "The Path-Distance-Width of Hypercubes." Discussiones Mathematicae Graph Theory 33.2 (2013): 467-470. <http://eudml.org/doc/267889>.

@article{YotaOtachi2013,
abstract = {The path-distance-width of a connected graph G is the minimum integer w satisfying that there is a nonempty subset of S ⊆ V (G) such that the number of the vertices with distance i from S is at most w for any nonnegative integer i. In this note, we determine the path-distance-width of hypercubes.},
author = {Yota Otachi},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {path-distance-width; hypercube},
language = {eng},
number = {2},
pages = {467-470},
title = {The Path-Distance-Width of Hypercubes},
url = {http://eudml.org/doc/267889},
volume = {33},
year = {2013},
}

TY - JOUR
AU - Yota Otachi
TI - The Path-Distance-Width of Hypercubes
JO - Discussiones Mathematicae Graph Theory
PY - 2013
VL - 33
IS - 2
SP - 467
EP - 470
AB - The path-distance-width of a connected graph G is the minimum integer w satisfying that there is a nonempty subset of S ⊆ V (G) such that the number of the vertices with distance i from S is at most w for any nonnegative integer i. In this note, we determine the path-distance-width of hypercubes.
LA - eng
KW - path-distance-width; hypercube
UR - http://eudml.org/doc/267889
ER -

References

top
  1. [1] S.L. Bezrukov and U. Leck, A simple proof of the Karakhanyan-Riordan theorem on the even discrete torus, SIAM J. Discrete Math. 23 (2009) 1416-1421. doi:10.1137/080715081[Crossref][WoS] Zbl1214.05053
  2. [2] B. Bollobás and I. Leader, Compressions and isoperimetric inequalities, J. Combin. Theory (A) 56 (1991) 47-62. doi:10.1016/0097-3165(91)90021-8[Crossref] 
  3. [3] L.S. Chandran and T. Kavitha, The treewidth and pathwidth of hypercubes, Discrete Math. 306 (2006) 359-365. doi:10.1016/j.disc.2005.12.011[Crossref] Zbl1083.05034
  4. [4] L.H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combin. Theory 1 (1966) 385-393. doi:10.1016/S0021-9800(66)80059-5[Crossref] Zbl0158.20802
  5. [5] H. Kaplan and R. Shamir, Pathwidth, bandwidth, and completion problems to proper interval graphs with small cliques, SIAM J. Comput. 25 (1996) 540-561. doi:10.1137/S0097539793258143[Crossref] Zbl0852.68072
  6. [6] D.J. Kleitman, On a problem of Yuzvinsky on separating the n-cube, Discrete Math. 60 (1986) 207-213. doi:10.1016/0012-365X(86)90013-0[Crossref] 
  7. [7] H.S. Moghadam, Bandwidth of the product of n paths, Congr. Numer. 173 (2005) 3-15. Zbl1093.05061
  8. [8] Y. Otachi, T. Saitoh, K. Yamanaka, S. Kijima, Y. Okamoto, H. Ono, Y. Uno and K. Yamazaki, Approximability of the path-distance-width for AT-free graphs, Lecture Notes in Comput. Sci., WG 2011 6986 (2011) 271-282. doi:10.1007/978-3-642-25870-1 25[Crossref] Zbl05988785
  9. [9] O. Riordan, An ordering on the even discrete torus, SIAM J. Discrete Math. 11 (1998) 110-127. doi:10.1137/S0895480194278234[Crossref] Zbl0914.05038
  10. [10] K. Yamazaki, On approximation intractability of the path-distance-width problem, Discrete Appl. Math. 110 (2001) 317-325. doi:10.1016/S0166-218X(00)00275-4[Crossref] 
  11. [11] K. Yamazaki, H.L. Bodlaender, B. de Fluiter, and D.M. Thilikos, Isomorphism for graphs of bounded distance width, Algorithmica 24 (1999) 105-127. doi:10.1007/PL00009273[Crossref] Zbl0934.68071

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.