The Path-Distance-Width of Hypercubes
Discussiones Mathematicae Graph Theory (2013)
- Volume: 33, Issue: 2, page 467-470
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topYota Otachi. "The Path-Distance-Width of Hypercubes." Discussiones Mathematicae Graph Theory 33.2 (2013): 467-470. <http://eudml.org/doc/267889>.
@article{YotaOtachi2013,
abstract = {The path-distance-width of a connected graph G is the minimum integer w satisfying that there is a nonempty subset of S ⊆ V (G) such that the number of the vertices with distance i from S is at most w for any nonnegative integer i. In this note, we determine the path-distance-width of hypercubes.},
author = {Yota Otachi},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {path-distance-width; hypercube},
language = {eng},
number = {2},
pages = {467-470},
title = {The Path-Distance-Width of Hypercubes},
url = {http://eudml.org/doc/267889},
volume = {33},
year = {2013},
}
TY - JOUR
AU - Yota Otachi
TI - The Path-Distance-Width of Hypercubes
JO - Discussiones Mathematicae Graph Theory
PY - 2013
VL - 33
IS - 2
SP - 467
EP - 470
AB - The path-distance-width of a connected graph G is the minimum integer w satisfying that there is a nonempty subset of S ⊆ V (G) such that the number of the vertices with distance i from S is at most w for any nonnegative integer i. In this note, we determine the path-distance-width of hypercubes.
LA - eng
KW - path-distance-width; hypercube
UR - http://eudml.org/doc/267889
ER -
References
top- [1] S.L. Bezrukov and U. Leck, A simple proof of the Karakhanyan-Riordan theorem on the even discrete torus, SIAM J. Discrete Math. 23 (2009) 1416-1421. doi:10.1137/080715081[Crossref][WoS] Zbl1214.05053
- [2] B. Bollobás and I. Leader, Compressions and isoperimetric inequalities, J. Combin. Theory (A) 56 (1991) 47-62. doi:10.1016/0097-3165(91)90021-8[Crossref]
- [3] L.S. Chandran and T. Kavitha, The treewidth and pathwidth of hypercubes, Discrete Math. 306 (2006) 359-365. doi:10.1016/j.disc.2005.12.011[Crossref] Zbl1083.05034
- [4] L.H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combin. Theory 1 (1966) 385-393. doi:10.1016/S0021-9800(66)80059-5[Crossref] Zbl0158.20802
- [5] H. Kaplan and R. Shamir, Pathwidth, bandwidth, and completion problems to proper interval graphs with small cliques, SIAM J. Comput. 25 (1996) 540-561. doi:10.1137/S0097539793258143[Crossref] Zbl0852.68072
- [6] D.J. Kleitman, On a problem of Yuzvinsky on separating the n-cube, Discrete Math. 60 (1986) 207-213. doi:10.1016/0012-365X(86)90013-0[Crossref]
- [7] H.S. Moghadam, Bandwidth of the product of n paths, Congr. Numer. 173 (2005) 3-15. Zbl1093.05061
- [8] Y. Otachi, T. Saitoh, K. Yamanaka, S. Kijima, Y. Okamoto, H. Ono, Y. Uno and K. Yamazaki, Approximability of the path-distance-width for AT-free graphs, Lecture Notes in Comput. Sci., WG 2011 6986 (2011) 271-282. doi:10.1007/978-3-642-25870-1 25[Crossref] Zbl05988785
- [9] O. Riordan, An ordering on the even discrete torus, SIAM J. Discrete Math. 11 (1998) 110-127. doi:10.1137/S0895480194278234[Crossref] Zbl0914.05038
- [10] K. Yamazaki, On approximation intractability of the path-distance-width problem, Discrete Appl. Math. 110 (2001) 317-325. doi:10.1016/S0166-218X(00)00275-4[Crossref]
- [11] K. Yamazaki, H.L. Bodlaender, B. de Fluiter, and D.M. Thilikos, Isomorphism for graphs of bounded distance width, Algorithmica 24 (1999) 105-127. doi:10.1007/PL00009273[Crossref] Zbl0934.68071
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.