# On the real X -ranks of points of P n (R) with respect to a real variety X ⊂ P n

Annales UMCS, Mathematica (2010)

- Volume: 64, Issue: 2, page 15-19
- ISSN: 2083-7402

## Access Full Article

top## Abstract

top## How to cite

topEdoardo Ballico. " On the real X -ranks of points of P n (R) with respect to a real variety X ⊂ P n ." Annales UMCS, Mathematica 64.2 (2010): 15-19. <http://eudml.org/doc/267900>.

@article{EdoardoBallico2010,

abstract = {Let X ⊂ Pn be an integral and non-degenerate m-dimensional variety defined over R. For any P ∈ Pn(R) the real X-rank r x,R(P) is the minimal cardinality of S ⊂ X(R) such that P ∈ . Here we extend to the real case an upper bound for the X-rank due to Landsberg and Teitler.},

author = {Edoardo Ballico},

journal = {Annales UMCS, Mathematica},

keywords = {Ranks; real variety; structured rank; ranks},

language = {eng},

number = {2},

pages = {15-19},

title = { On the real X -ranks of points of P n (R) with respect to a real variety X ⊂ P n },

url = {http://eudml.org/doc/267900},

volume = {64},

year = {2010},

}

TY - JOUR

AU - Edoardo Ballico

TI - On the real X -ranks of points of P n (R) with respect to a real variety X ⊂ P n

JO - Annales UMCS, Mathematica

PY - 2010

VL - 64

IS - 2

SP - 15

EP - 19

AB - Let X ⊂ Pn be an integral and non-degenerate m-dimensional variety defined over R. For any P ∈ Pn(R) the real X-rank r x,R(P) is the minimal cardinality of S ⊂ X(R) such that P ∈ . Here we extend to the real case an upper bound for the X-rank due to Landsberg and Teitler.

LA - eng

KW - Ranks; real variety; structured rank; ranks

UR - http://eudml.org/doc/267900

ER -

## References

top- Albera, L., Chevalier, P., Comon, P. and Ferreol, A., On the virtual array concept for higher order array processing, IEEE Trans. Signal Process. 53(4) (2005), 1254-1271.
- Arbarello, E., Cornalba, M., Griffiths, P. and Harris, J., Geometry of Algebraic Curves. I, Springer-Verlag, New York, 1985. Zbl0559.14017
- Ballico, E., Ranks of subvarieties of Pn over non-algebraically closed fields, Int. J. Pure Appl. Math. 61(1) (2010), 7-10. Zbl1203.14061
- Ballico, E., Subsets of the variety X ⊂ Pn computing the X-rank of a point of Pn, preprint.
- Bernardi, A., Gimigliano, A. and Idà, M., Computing symmetric rank for symmetric tensors, J. Symbolic Comput. 46 (2011), 34-55.[WoS] Zbl1211.14057
- Bochnak, J., Coste, M. and Roy, F.-M., Real Algebraic Geometry, Translated from the 1987 French original. Revised by the authors. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36, Springer-Verlag, Berlin, 1998.
- Buczyński, J., Landsberg, J. M., Ranks of tensors and a generalization of secant varieties, arXiv:0909.4262v1 [math. AG].[WoS] Zbl1268.15024
- Comas, G., Seiguer, M., On the rank of a binary form, arXiv:math. AG/0112311.[WoS] Zbl1211.14059
- Comon, P., Golub, G., Lim, L.-H. and Mourrain, B., Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30(3) (2008), 1254-1279. Zbl1181.15014
- Hartshorne, R., Algebraic Geometry, Springer-Verlag, Berlin, 1977.
- Landsberg, J. M., Teitler, Z., On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), 339-366.[WoS] Zbl1196.15024
- Lang, S., Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.