On Kaluza's sign criterion for reciprocal power series

Árpád Baricz; Jetro Vesti; Matti Vuorinen

Annales UMCS, Mathematica (2011)

  • Volume: 65, Issue: 2, page 1-16
  • ISSN: 2083-7402

Abstract

top
T. Kaluza has given a criterion for the signs of the power series of a function that is the reciprocal of another power series. In this note the sharpness of this condition is explored and various examples in terms of the Gaussian hypergeometric series are given. A criterion for the monotonicity of the quotient of two power series due to M. Biernacki and J. Krzyż is applied.

How to cite

top

Árpád Baricz, Jetro Vesti, and Matti Vuorinen. "On Kaluza's sign criterion for reciprocal power series." Annales UMCS, Mathematica 65.2 (2011): 1-16. <http://eudml.org/doc/267915>.

@article{ÁrpádBaricz2011,
abstract = {T. Kaluza has given a criterion for the signs of the power series of a function that is the reciprocal of another power series. In this note the sharpness of this condition is explored and various examples in terms of the Gaussian hypergeometric series are given. A criterion for the monotonicity of the quotient of two power series due to M. Biernacki and J. Krzyż is applied.},
author = {Árpád Baricz, Jetro Vesti, Matti Vuorinen},
journal = {Annales UMCS, Mathematica},
keywords = {Power series; log-convexity; hypergeometric functions; trigonometric functions},
language = {eng},
number = {2},
pages = {1-16},
title = {On Kaluza's sign criterion for reciprocal power series},
url = {http://eudml.org/doc/267915},
volume = {65},
year = {2011},
}

TY - JOUR
AU - Árpád Baricz
AU - Jetro Vesti
AU - Matti Vuorinen
TI - On Kaluza's sign criterion for reciprocal power series
JO - Annales UMCS, Mathematica
PY - 2011
VL - 65
IS - 2
SP - 1
EP - 16
AB - T. Kaluza has given a criterion for the signs of the power series of a function that is the reciprocal of another power series. In this note the sharpness of this condition is explored and various examples in terms of the Gaussian hypergeometric series are given. A criterion for the monotonicity of the quotient of two power series due to M. Biernacki and J. Krzyż is applied.
LA - eng
KW - Power series; log-convexity; hypergeometric functions; trigonometric functions
UR - http://eudml.org/doc/267915
ER -

References

top
  1. Anderson, G. D., Vamanamurthy, M. K. and Vuorinen, M., Conformal Invariants, Inequalities and Quasiconformal Maps, John Wiley & Sons, Inc., New York, 1997. Zbl0885.30012
  2. Baricz, Á., Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, vol. 1994, Springer-Verlag, Berlin, 2010. Zbl1203.33001
  3. Baricz, Á., Bounds for modified Bessel functions of the first and second kinds, Proc. Edinb. Math. Soc. 53 (3) (2010), 575-599.[WoS][Crossref] Zbl1202.33008
  4. Beckenbach, E. F., Bellman, R., Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 30, Springer-Verlag, Berlin, 1961. 
  5. Belzunce, F., Ortega, E. M. and Ruiz, J. M., On non-monotonic ageing properties from the Laplace transform, with actuarial applications, Insurance Math. Econom. 40 (2007), 1-14.[Crossref] Zbl1273.91231
  6. Biernacki, M., Krzyż, J., On the monotonicity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A. 9 (1955), 135-147. Zbl0078.26402
  7. Carlitz, L., Advanced Problems and Solutions: Solutions: 4803, Amer. Math. Monthly 66 (5) (1959), 239-240. 
  8. Davenport, H., Pólya, G., On the product of two power series, Canadian J. Math. 1 (1949), 1-5. Zbl0037.32505
  9. Hansen, B. G., Steutel, F. W., On moment sequences and infinitely divisible sequences, J. Math. Anal. Appl. 136 (1988), 304-313.[Crossref] Zbl0665.60022
  10. Hardy, G. H., Divergent Series, With a preface by J. E. Littlewood and a note by L. S. Bosanquet. Reprint of the revised (1963) edition. Éditions Jacques Gabay, Sceaux, 1992. Zbl0897.01044
  11. Heikkala, V., Vamanamurthy, M. K. and Vuorinen, M., Generalized elliptic integrals, Comput. Methods Funct. Theory 9 (1) (2009), 75-109.[Crossref] 
  12. Henrici, P., Applied and computational complex analysis. Vol. 1, Power series - integration - conformal mapping - location of zeros, Reprint of the 1974 original, John Wiley & Sons, Inc., New York, 1988. Zbl0635.30001
  13. Horn, R. A., On moment sequences and renewal sequences, J. Math. Anal. Appl. 31 (1970), 130-135.[Crossref] Zbl0175.16701
  14. Jurkat, W. B., Questions of signs in power series, Proc. Amer. Math. Soc. 5 (6) (1954), 964-970.[Crossref] Zbl0059.06105
  15. Kaluza, T., Über die Koeffizienten reziproker Potenzreihen, Math. Z. 28 (1928), 161-170.[Crossref] Zbl54.0335.03
  16. Kendall, D. G., Renewal sequences and their arithmetic, Proceedings of Loutraki Symposium on Probability Methods in Analysis, Lecture Notes in Mathematics, vol. 31, Springer-Verlag, New York-Berlin, 1967, pp. 147-175. Zbl0178.19803
  17. Lamperti, J., On the coefficients of reciprocal power series, Amer. Math. Monthly 65 (2) (1958), 90-94.[Crossref] Zbl0081.29503
  18. Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W. (eds.), NIST Handbook of Mathematical Functions, Cambridge Univ. Press, Cambridge, 2010. Zbl1198.00002
  19. Szegő, G., Bemerkungen zu einer Arbeit von Herrn Fejér über die Legendreschen Polynome, Math. Z. 25 (1926), 172-187.[Crossref] Zbl52.0351.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.