Weak Saturation Numbers for Sparse Graphs

Ralph J. Faudree; Ronald J. Gould; Michael S. Jacobson

Discussiones Mathematicae Graph Theory (2013)

  • Volume: 33, Issue: 4, page 677-693
  • ISSN: 2083-5892

Abstract

top
For a fixed graph F, a graph G is F-saturated if there is no copy of F in G, but for any edge e ∉ G, there is a copy of F in G + e. The minimum number of edges in an F-saturated graph of order n will be denoted by sat(n, F). A graph G is weakly F-saturated if there is an ordering of the missing edges of G so that if they are added one at a time, each edge added creates a new copy of F. The minimum size of a weakly F-saturated graph G of order n will be denoted by wsat(n, F). The graphs of order n that are weakly F-saturated will be denoted by wSAT(n, F), and those graphs in wSAT(n, F) with wsat(n, F) edges will be denoted by wSAT(n, F). The precise value of wsat(n, T) for many families of sparse graphs, and in particular for many trees, will be determined. More specifically, families of trees for which wsat(n, T) = |T|−2 will be determined. The maximum and minimum values of wsat(n, T) for the class of all trees will be given. Some properties of wsat(n, T) and wSAT(n, T) for trees will be discussed. Keywords: saturated graphs, sparse graphs, weak saturation.

How to cite

top

Ralph J. Faudree, Ronald J. Gould, and Michael S. Jacobson. "Weak Saturation Numbers for Sparse Graphs." Discussiones Mathematicae Graph Theory 33.4 (2013): 677-693. <http://eudml.org/doc/267922>.

@article{RalphJ2013,
abstract = {For a fixed graph F, a graph G is F-saturated if there is no copy of F in G, but for any edge e ∉ G, there is a copy of F in G + e. The minimum number of edges in an F-saturated graph of order n will be denoted by sat(n, F). A graph G is weakly F-saturated if there is an ordering of the missing edges of G so that if they are added one at a time, each edge added creates a new copy of F. The minimum size of a weakly F-saturated graph G of order n will be denoted by wsat(n, F). The graphs of order n that are weakly F-saturated will be denoted by wSAT(n, F), and those graphs in wSAT(n, F) with wsat(n, F) edges will be denoted by wSAT(n, F). The precise value of wsat(n, T) for many families of sparse graphs, and in particular for many trees, will be determined. More specifically, families of trees for which wsat(n, T) = |T|−2 will be determined. The maximum and minimum values of wsat(n, T) for the class of all trees will be given. Some properties of wsat(n, T) and wSAT(n, T) for trees will be discussed. Keywords: saturated graphs, sparse graphs, weak saturation.},
author = {Ralph J. Faudree, Ronald J. Gould, Michael S. Jacobson},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {saturated graphs; sparse graphs; weak saturation},
language = {eng},
number = {4},
pages = {677-693},
title = {Weak Saturation Numbers for Sparse Graphs},
url = {http://eudml.org/doc/267922},
volume = {33},
year = {2013},
}

TY - JOUR
AU - Ralph J. Faudree
AU - Ronald J. Gould
AU - Michael S. Jacobson
TI - Weak Saturation Numbers for Sparse Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2013
VL - 33
IS - 4
SP - 677
EP - 693
AB - For a fixed graph F, a graph G is F-saturated if there is no copy of F in G, but for any edge e ∉ G, there is a copy of F in G + e. The minimum number of edges in an F-saturated graph of order n will be denoted by sat(n, F). A graph G is weakly F-saturated if there is an ordering of the missing edges of G so that if they are added one at a time, each edge added creates a new copy of F. The minimum size of a weakly F-saturated graph G of order n will be denoted by wsat(n, F). The graphs of order n that are weakly F-saturated will be denoted by wSAT(n, F), and those graphs in wSAT(n, F) with wsat(n, F) edges will be denoted by wSAT(n, F). The precise value of wsat(n, T) for many families of sparse graphs, and in particular for many trees, will be determined. More specifically, families of trees for which wsat(n, T) = |T|−2 will be determined. The maximum and minimum values of wsat(n, T) for the class of all trees will be given. Some properties of wsat(n, T) and wSAT(n, T) for trees will be discussed. Keywords: saturated graphs, sparse graphs, weak saturation.
LA - eng
KW - saturated graphs; sparse graphs; weak saturation
UR - http://eudml.org/doc/267922
ER -

References

top
  1. [1] M. Borowiecki and E. Sidorowicz, Weakly P-saturated graphs, Discuss. Math. Graph Theory 22 (2002) 17-22. doi:10.7151/dmgt.1155 [Crossref] Zbl1016.05044
  2. [2] B. Bollobás, Weakly k-saturated graphs, Beitr¨age ur Graphentheorie, Kolloquium, Manebach, 1967 (Teubner, Leipig, 1968) 25-31. 
  3. [3] G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman and Hall, London, 2005). Zbl1057.05001
  4. [4] P. Erdös, Z. Füredi and Zs. Tuza, Saturated r-uniform hyperegraphs, Discrete Math. 98 (1991) 95-104. doi:10.1016/0012-365X(91)90035-Z[Crossref] 
  5. [5] P. Erdös, A. Hajnal and J.W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964) 1107-1110. doi:10.2307/2311408[Crossref] 
  6. [6] J.R. Faudree, R.J. Faudree and J. Schmitt, A survey of minimum saturated graphs Electron. J. Combin. DS19 (2011) 36 pages. Zbl1222.05113
  7. [7] J.R. Faudree, R.J. Faudree, R.J. Gould and M.S. Jacobson, Saturation numbers for trees, Electron. J. Combin. 16 (2009). Zbl1186.05072
  8. [8] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210. doi:10.1002/jgt.3190100209[Crossref] 
  9. [9] L. Lovász, Flats in matroids and geometric graphs, Combinatorial Surveys (Proc. Sixth British Combinatorial Conf.), Royal Holloway Coll., Egham (Academic Press, London, 1977) 45-86. 
  10. [10] O. Pikhurko, Weakly saturated hypergraphs and exterior algebra, Combin. Probab.Comput. 10 (2001) 435-451. doi:10.1017/S0963548301004746[Crossref] Zbl1002.05053
  11. [11] E. Sidorowicz, Size of weakly saturated graphs, Discrete Math. 307 (2007) 1486-1492. doi:10.1016/j.disc.2005.11.085[Crossref][WoS] Zbl1118.05046
  12. [12] L. Taylor Ollmann, K2,2 saturated graphs with a minimal number of edges, in: Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla.) (1972), 367-392. 
  13. [13] Zs. Tuza, Extremal Problems on saturated graphs and hypergraphs, Ars Combin. 25B (1988) Eleventh British Combinatorial Conference (London (1987)), 105-113. 
  14. [14] Zs. Tuza, Asymptotic growth of sparse saturated structures is locally determined, Discrete Math. 108 (1992) 397-402. doi:10.1016/0012-365X(92)90692-9 [Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.