Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function

G. Murugusundaramoorthy; K. Uma

Annales UMCS, Mathematica (2010)

  • Volume: 64, Issue: 2, page 61-72
  • ISSN: 2083-7402

Abstract

top
Making use of the Hurwitz-Lerch Zeta function, we define a new subclass of uniformly convex functions and a corresponding subclass of starlike functions with negative coefficients of complex order denoted by TSμ/b (α, β, γ) and obtain coefficient estimates, extreme points, the radii of close to convexity, starlikeness and convexity and neighbourhood results for the class TSμ/b (α, β, γ). In particular, we obtain integral means inequalities for the function f(z) belongs to the class TSμ/b (α, β, γ) in the unit disc.

How to cite

top

G. Murugusundaramoorthy, and K. Uma. "Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function." Annales UMCS, Mathematica 64.2 (2010): 61-72. <http://eudml.org/doc/267929>.

@article{G2010,
abstract = {Making use of the Hurwitz-Lerch Zeta function, we define a new subclass of uniformly convex functions and a corresponding subclass of starlike functions with negative coefficients of complex order denoted by TSμ/b (α, β, γ) and obtain coefficient estimates, extreme points, the radii of close to convexity, starlikeness and convexity and neighbourhood results for the class TSμ/b (α, β, γ). In particular, we obtain integral means inequalities for the function f(z) belongs to the class TSμ/b (α, β, γ) in the unit disc.},
author = {G. Murugusundaramoorthy, K. Uma},
journal = {Annales UMCS, Mathematica},
keywords = {Univalent; starlike; convex; uniformly convex; uniformly star-like; Hadamard product; integral means; Hurwitz-Lerch Zeta function; starlike function; convex function; Hurwitz-Lerch zeta function},
language = {eng},
number = {2},
pages = {61-72},
title = {Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function},
url = {http://eudml.org/doc/267929},
volume = {64},
year = {2010},
}

TY - JOUR
AU - G. Murugusundaramoorthy
AU - K. Uma
TI - Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function
JO - Annales UMCS, Mathematica
PY - 2010
VL - 64
IS - 2
SP - 61
EP - 72
AB - Making use of the Hurwitz-Lerch Zeta function, we define a new subclass of uniformly convex functions and a corresponding subclass of starlike functions with negative coefficients of complex order denoted by TSμ/b (α, β, γ) and obtain coefficient estimates, extreme points, the radii of close to convexity, starlikeness and convexity and neighbourhood results for the class TSμ/b (α, β, γ). In particular, we obtain integral means inequalities for the function f(z) belongs to the class TSμ/b (α, β, γ) in the unit disc.
LA - eng
KW - Univalent; starlike; convex; uniformly convex; uniformly star-like; Hadamard product; integral means; Hurwitz-Lerch Zeta function; starlike function; convex function; Hurwitz-Lerch zeta function
UR - http://eudml.org/doc/267929
ER -

References

top
  1. Alexander, J. W., Functions which map the interior of the unit circle upon simple regions, Ann. of Math. 17 (1915), 12-22. Zbl45.0672.02
  2. Altintas, O., Ozkan, O. and Srivastava, H. M., Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (2000), 63-67.[Crossref] Zbl0955.30015
  3. Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446. Zbl0172.09703
  4. Choi, J., Srivastava, H. M., Certain families of series associated with the Hurwitz-Lerch Zeta function, Appl. Math. Comput. 170 (2005), 399-409. Zbl1082.11052
  5. Ferreira, C., López, J. L., Asymptotic expansions of the Hurwitz-Lerch Zeta function, J. Math. Anal. Appl. 298 (2004), 210-224. Zbl1106.11034
  6. Flet, T. M., The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765[Crossref] Zbl0246.30031
  7. Garg, M., Jain, K. and Srivastava, H. M., Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct. 17 (2006), 803-815.[Crossref] Zbl1184.11005
  8. Goodman, A. W., Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601.[Crossref] Zbl0166.33002
  9. Goodman, A. W., On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92. Zbl0744.30010
  10. Goodman, A. W., On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), 364-370. Zbl0726.30013
  11. Jung, I. B., Kim, Y. C. and Srivastava, H. M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138-147. Zbl0774.30008
  12. Kanas, S., Wiśniowska, A., Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327-336.[Crossref] Zbl0944.30008
  13. Kanas, S., Wiśniowska, A., Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45(4) (2000), 647-657. Zbl0990.30010
  14. Kanas, S., Srivastava, H. M., Linear operators associated with k-uniformly convex functions, Integral Transform. Spec. Funct. 9(2) (2000), 121-132.[Crossref] Zbl0959.30007
  15. Kanas, S., Yaguchi, T., Subclasses of k-uniformly convex and starlike functions defined by generalized derivative. II, Publ. Inst. Math. (Beograd) (N.S.) 69(83) (2001), 91-100. Zbl1003.30010
  16. Lin, S.-D., Srivastava, H. M., Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), 725-733. Zbl1078.11054
  17. Lin, S.-D., Srivastava, H. M. and Wang, P.-Y., Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct. 17 (2006), 817-827.[Crossref] Zbl1172.11026
  18. Littlewood, J. E., On inequalities in theory of functions, Proc. London Math. Soc. 23 (1925), 481-519.[Crossref] Zbl51.0247.03
  19. Murugusundaramoorthy, G., Srivastava H.M., Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5(2) (2004), Art. 24, 1-8. Zbl1051.30017
  20. Prajapat, J. K., Goyal, S. P., Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal. 3 (2009), 129-137.[Crossref] Zbl1160.30325
  21. Râducanu, D., Srivastava, H. M., A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transform. Spec. Funct. 18 (2007), 933-943.[WoS][Crossref] Zbl1130.30003
  22. Rønning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189-196. Zbl0805.30012
  23. Rønning, F., Integral representations for bounded starlike functions, Ann. Polon. Math. 60 (1995), 289-297. Zbl0818.30008
  24. Ruscheweyh, S., Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521-527.[Crossref] Zbl0458.30008
  25. Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.[Crossref] Zbl0311.30007
  26. Silverman, H., Integral means for univalent functions with negative coefficients, Houston J. Math. 23 (1997), 169-174. Zbl0889.30010
  27. Srivastava, H. M., Attiya, A. A., An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transform. Spec. Funct. 18 (2007), 207-216.[Crossref][WoS] Zbl1112.30007
  28. Srivastava, H. M., Choi, J., Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001. Zbl1014.33001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.