On the Erdős-Gyárfás Conjecture in Claw-Free Graphs
Pouria Salehi Nowbandegani; Hossein Esfandiari; Mohammad Hassan Shirdareh Haghighi; Khodakhast Bibak
Discussiones Mathematicae Graph Theory (2014)
- Volume: 34, Issue: 3, page 635-640
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.A. Bondy, Extremal problems of Paul Erdős on circuits in graphs, in: Paul Erdős and his Mathematics, II, Bolyai Soc. Math. Stud., 11, Janos Bolyai Math. Soc., Budapest (2002), 135-156. Zbl1051.05051
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer-Verlag, New York, 2008).
- [3] D. Daniel and S.E. Shauger, A result on the Erdős-Gyárfás conjecture in planar graphs, Congr. Numer. 153 (2001) 129-140. Zbl0997.05053
- [4] P. Erdős, Some old and new problems in various branches of combinatorics, Discrete Math. 165/166 (1997) 227-231. doi:10.1016/S0012-365X(96)00173-2[Crossref]
- [5] K. Markstr¨om, Extremal graphs for some problems on cycles in graphs, Congr. Numer. 171 (2004) 179-192.
- [6] P. Salehi Nowbandegani and H. Esfandiari, An experimental result on the Erdős-Gyárfás conjecture in bipartite graphs, 14th Workshop on Graph Theory CID, September 18-23, 2011, Szklarska Por¸eba, Poland.
- [7] S.E. Shauger, Results on the Erdős-Gyárfás conjecture in K1,m-free graphs, Congr. Numer. 134 (1998) 61-65. Zbl0952.05038
- [8] J. Verstraëte, Unavoidable cycle lengths in graphs, J. Graph Theory 49 (2005) 151-167. doi:10.1002/jgt.20072[Crossref] Zbl1064.05091