A Tight Bound on the Set Chromatic Number
Jean-Sébastien Sereni; Zelealem B. Yilma
Discussiones Mathematicae Graph Theory (2013)
- Volume: 33, Issue: 2, page 461-465
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topJean-Sébastien Sereni, and Zelealem B. Yilma. "A Tight Bound on the Set Chromatic Number." Discussiones Mathematicae Graph Theory 33.2 (2013): 461-465. <http://eudml.org/doc/268003>.
@article{Jean2013,
abstract = {We provide a tight bound on the set chromatic number of a graph in terms of its chromatic number. Namely, for all graphs G, we show that χs(G) > ⌈log2 χ(G)⌉ + 1, where χs(G) and χ(G) are the set chromatic number and the chromatic number of G, respectively. This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.},
author = {Jean-Sébastien Sereni, Zelealem B. Yilma},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {chromatic number; set coloring; set chromatic number; neighbor; distinguishing coloring},
language = {eng},
number = {2},
pages = {461-465},
title = {A Tight Bound on the Set Chromatic Number},
url = {http://eudml.org/doc/268003},
volume = {33},
year = {2013},
}
TY - JOUR
AU - Jean-Sébastien Sereni
AU - Zelealem B. Yilma
TI - A Tight Bound on the Set Chromatic Number
JO - Discussiones Mathematicae Graph Theory
PY - 2013
VL - 33
IS - 2
SP - 461
EP - 465
AB - We provide a tight bound on the set chromatic number of a graph in terms of its chromatic number. Namely, for all graphs G, we show that χs(G) > ⌈log2 χ(G)⌉ + 1, where χs(G) and χ(G) are the set chromatic number and the chromatic number of G, respectively. This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.
LA - eng
KW - chromatic number; set coloring; set chromatic number; neighbor; distinguishing coloring
UR - http://eudml.org/doc/268003
ER -
References
top- [1] G. Chartrand, F. Okamoto, C.W. Rasmussen, and P. Zhang, The set chromatic number of a graph, Discuss. Math. Graph Theory 29 (2009) 545-561. doi:10.7151/dmgt.1463[Crossref] Zbl1193.05073
- [2] G. Chartrand, F. Okamoto, and P. Zhang, Neighbor-distinguishing vertex colorings of graphs, J. Combin. Math. Combin. Comput. 74 (2010) 223-251. Zbl1223.05066
- [3] R. Gera, F. Okamoto, C. Rasmussen, and P. Zhang, Set colorings in perfect graphs, Math. Bohem. 136 (2011) 61-68. Zbl1224.05171
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.