Star Coloring of Subcubic Graphs

T. Karthick; C.R. Subramanian

Discussiones Mathematicae Graph Theory (2013)

  • Volume: 33, Issue: 2, page 373-385
  • ISSN: 2083-5892

Abstract

top
A star coloring of an undirected graph G is a coloring of the vertices of G such that (i) no two adjacent vertices receive the same color, and (ii) no path on 4 vertices is bi-colored. The star chromatic number of G, χs(G), is the minimum number of colors needed to star color G. In this paper, we show that if a graph G is either non-regular subcubic or cubic with girth at least 6, then χs(G) ≤ 6, and the bound can be realized in linear time.

How to cite

top

T. Karthick, and C.R. Subramanian. "Star Coloring of Subcubic Graphs." Discussiones Mathematicae Graph Theory 33.2 (2013): 373-385. <http://eudml.org/doc/268043>.

@article{T2013,
abstract = {A star coloring of an undirected graph G is a coloring of the vertices of G such that (i) no two adjacent vertices receive the same color, and (ii) no path on 4 vertices is bi-colored. The star chromatic number of G, χs(G), is the minimum number of colors needed to star color G. In this paper, we show that if a graph G is either non-regular subcubic or cubic with girth at least 6, then χs(G) ≤ 6, and the bound can be realized in linear time.},
author = {T. Karthick, C.R. Subramanian},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {vertex coloring; star coloring; subcubic graphs},
language = {eng},
number = {2},
pages = {373-385},
title = {Star Coloring of Subcubic Graphs},
url = {http://eudml.org/doc/268043},
volume = {33},
year = {2013},
}

TY - JOUR
AU - T. Karthick
AU - C.R. Subramanian
TI - Star Coloring of Subcubic Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2013
VL - 33
IS - 2
SP - 373
EP - 385
AB - A star coloring of an undirected graph G is a coloring of the vertices of G such that (i) no two adjacent vertices receive the same color, and (ii) no path on 4 vertices is bi-colored. The star chromatic number of G, χs(G), is the minimum number of colors needed to star color G. In this paper, we show that if a graph G is either non-regular subcubic or cubic with girth at least 6, then χs(G) ≤ 6, and the bound can be realized in linear time.
LA - eng
KW - vertex coloring; star coloring; subcubic graphs
UR - http://eudml.org/doc/268043
ER -

References

top
  1. [1] M.O. Albertson, G.G. Chappell, H.A. Kierstead, A. Kündgen and R. Ramamurthi, Coloring with no 2-colored P4’s, Electron. J. Combin. 11 (2004) #R26. Zbl1053.05045
  2. [2] N.R. Aravind and C.R. Subramanian, Bounds on vertex colorings with restrictions on the union of color classes, J. Graph Theory 66 (2011) 213-234. doi:10.1002/jgt.20501[Crossref][WoS] Zbl1228.05147
  3. [3] M.I. Burstein, Every 4-valent graph has an acyclic 5-coloring, Soobshcheniya Akademii Nauk Gruzinskoi SSR, 93 (1979) 21-24 (in Russian). 
  4. [4] T.F. Coleman and J.Y. Cai, The cyclic coloring problem an estimation of sparse Hessian matrices, SIAM Journal of Algebraic and Discrete Methods 7 (1986) 221-235. doi:10.1137/0607026[Crossref] 
  5. [5] T.F. Coleman and J.J. Mor´e, Estimation of sparse Hessian matrices and graph coloring problems, Math. Program. 28(3) (1984) 243-270. doi:10.1007/BF02612334[Crossref] 
  6. [6] G. Fertin, A. Raspaud and B. Reed, Star coloring of graphs, J. Graph Theory 47 (2004) 163-182. doi:10.1002/jgt.20029[Crossref] Zbl1055.05051
  7. [7] A.H. Gebremedhin, F. Manne and A. Pothen, What color is your Jacobian? Graph coloring for computing derivatives, SIAM Rev. 47 (2005) 629-705. doi:10.1137/S0036144504444711[Crossref] Zbl1076.05034
  8. [8] A.H. Gebremedhin, A. Tarafdar, F. Manne and A. Pothen, New acyclic and star coloring algorithms with applications to computing Hessians, SIAM J. Sci. Comput. 29 (2007) 1042-1072. doi:10.1137/050639879[WoS][Crossref] 
  9. [9] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-408. doi:10.1007/BF02764716[Crossref] Zbl0265.05103
  10. [10] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience, New York, 1995). 
  11. [11] A.V. Kostochka and C. Stocker, Graphs with maximum degree 5 are acyclically 7- colorable, Ars Math. Contemp. 4 (2011) 153-164. Zbl1236.05083
  12. [12] A. Lyons, Acyclic and star colorings of cographs, Discrete Appl. Math. 159 (2011) 1842-1850. doi:10.1016/j.dam.2011.04.011[Crossref][WoS] Zbl1228.05156
  13. [13] S. Skulrattankulchai, Acyclic colorings of subcubic graphs, Inform. Process. Lett. 92 (2004) 161-167. doi:10.1016/j.ipl.2004.08.002[Crossref] 
  14. [14] D.B. West, Introduction to Graph Theory, 2nd Edition (Prentice-Hall, Englewood Cliffs, New Jersey, 2000). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.