# On certain coefficient bounds for multivalent functions

Fatma Altuntaş; Muhammet Kamali

Annales UMCS, Mathematica (2009)

- Volume: 63, Issue: 1, page 1-16
- ISSN: 2083-7402

## Access Full Article

top## Abstract

top## How to cite

topFatma Altuntaş, and Muhammet Kamali. "On certain coefficient bounds for multivalent functions." Annales UMCS, Mathematica 63.1 (2009): 1-16. <http://eudml.org/doc/268072>.

@article{FatmaAltuntaş2009,

abstract = {In the present paper, the authors obtain sharp upper bounds for certain coefficient inequalities for linear combination of Mocanu α-convex p-valent functions. Sharp bounds for [...] and [...] are derived for multivalent functions.},

author = {Fatma Altuntaş, Muhammet Kamali},

journal = {Annales UMCS, Mathematica},

keywords = {Analytic functions; starlike functions; convex functions; Mocanu α-convex p-valent functions; subordination; convolution (or Hadamard product); starlike function; convex function; Hadamard product},

language = {eng},

number = {1},

pages = {1-16},

title = {On certain coefficient bounds for multivalent functions},

url = {http://eudml.org/doc/268072},

volume = {63},

year = {2009},

}

TY - JOUR

AU - Fatma Altuntaş

AU - Muhammet Kamali

TI - On certain coefficient bounds for multivalent functions

JO - Annales UMCS, Mathematica

PY - 2009

VL - 63

IS - 1

SP - 1

EP - 16

AB - In the present paper, the authors obtain sharp upper bounds for certain coefficient inequalities for linear combination of Mocanu α-convex p-valent functions. Sharp bounds for [...] and [...] are derived for multivalent functions.

LA - eng

KW - Analytic functions; starlike functions; convex functions; Mocanu α-convex p-valent functions; subordination; convolution (or Hadamard product); starlike function; convex function; Hadamard product

UR - http://eudml.org/doc/268072

ER -

## References

top- Ali, R. M., Ravichandran, V. and Seenivasagan, N., Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), 35-46.[WoS] Zbl1113.30024
- Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. Zbl0165.09102
- Ma, W. C., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Z. Li, F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press, Cambridge, MA, 1994, 157-169. Zbl0823.30007
- Owa, S., Properties of certain integral operators, Southeast Asian Bull. Math. 24, no. 3 (2000), 411-419. Zbl0980.30011
- Prokhorov, D. V., Szynal, J., Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125-143, 1984.
- Ramachandran, C., Sivasubramanian, S. and Silverman, H., Certain coefficients bounds for p-valent functions, Int. J. Math. Math. Sci., vol. 2007, Art. ID 46576, 11 pp. Zbl1139.30307
- Shanmugam, T. N., Owa, S., Ramachandran, C., Sivasubramanian, S. and Nakamura, Y., On certain coefficient inequalities for multivalent functions, J. Math. Inequal. 3 (2009), 31-41. Zbl1160.30332
- Sălăgean, G. Ş., Subclasses of univalent functions, Complex Analysis - fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lectures Notes in Math., 1013, Springer-Verlag, Berlin, 1983, 362-372.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.