On certain coefficient bounds for multivalent functions
Fatma Altuntaş; Muhammet Kamali
Annales UMCS, Mathematica (2009)
- Volume: 63, Issue: 1, page 1-16
- ISSN: 2083-7402
Access Full Article
topAbstract
topHow to cite
topFatma Altuntaş, and Muhammet Kamali. "On certain coefficient bounds for multivalent functions." Annales UMCS, Mathematica 63.1 (2009): 1-16. <http://eudml.org/doc/268072>.
@article{FatmaAltuntaş2009,
abstract = {In the present paper, the authors obtain sharp upper bounds for certain coefficient inequalities for linear combination of Mocanu α-convex p-valent functions. Sharp bounds for [...] and [...] are derived for multivalent functions.},
author = {Fatma Altuntaş, Muhammet Kamali},
journal = {Annales UMCS, Mathematica},
keywords = {Analytic functions; starlike functions; convex functions; Mocanu α-convex p-valent functions; subordination; convolution (or Hadamard product); starlike function; convex function; Hadamard product},
language = {eng},
number = {1},
pages = {1-16},
title = {On certain coefficient bounds for multivalent functions},
url = {http://eudml.org/doc/268072},
volume = {63},
year = {2009},
}
TY - JOUR
AU - Fatma Altuntaş
AU - Muhammet Kamali
TI - On certain coefficient bounds for multivalent functions
JO - Annales UMCS, Mathematica
PY - 2009
VL - 63
IS - 1
SP - 1
EP - 16
AB - In the present paper, the authors obtain sharp upper bounds for certain coefficient inequalities for linear combination of Mocanu α-convex p-valent functions. Sharp bounds for [...] and [...] are derived for multivalent functions.
LA - eng
KW - Analytic functions; starlike functions; convex functions; Mocanu α-convex p-valent functions; subordination; convolution (or Hadamard product); starlike function; convex function; Hadamard product
UR - http://eudml.org/doc/268072
ER -
References
top- Ali, R. M., Ravichandran, V. and Seenivasagan, N., Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), 35-46.[WoS] Zbl1113.30024
- Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. Zbl0165.09102
- Ma, W. C., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Z. Li, F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press, Cambridge, MA, 1994, 157-169. Zbl0823.30007
- Owa, S., Properties of certain integral operators, Southeast Asian Bull. Math. 24, no. 3 (2000), 411-419. Zbl0980.30011
- Prokhorov, D. V., Szynal, J., Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125-143, 1984.
- Ramachandran, C., Sivasubramanian, S. and Silverman, H., Certain coefficients bounds for p-valent functions, Int. J. Math. Math. Sci., vol. 2007, Art. ID 46576, 11 pp. Zbl1139.30307
- Shanmugam, T. N., Owa, S., Ramachandran, C., Sivasubramanian, S. and Nakamura, Y., On certain coefficient inequalities for multivalent functions, J. Math. Inequal. 3 (2009), 31-41. Zbl1160.30332
- Sălăgean, G. Ş., Subclasses of univalent functions, Complex Analysis - fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lectures Notes in Math., 1013, Springer-Verlag, Berlin, 1983, 362-372.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.