On certain coefficient bounds for multivalent functions
Fatma Altuntaş; Muhammet Kamali
Annales UMCS, Mathematica (2009)
- Volume: 63, Issue: 1, page 1-16
- ISSN: 2083-7402
Access Full Article
topAbstract
topHow to cite
topReferences
top- Ali, R. M., Ravichandran, V. and Seenivasagan, N., Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), 35-46.[WoS] Zbl1113.30024
- Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. Zbl0165.09102
- Ma, W. C., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Z. Li, F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press, Cambridge, MA, 1994, 157-169. Zbl0823.30007
- Owa, S., Properties of certain integral operators, Southeast Asian Bull. Math. 24, no. 3 (2000), 411-419. Zbl0980.30011
- Prokhorov, D. V., Szynal, J., Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125-143, 1984.
- Ramachandran, C., Sivasubramanian, S. and Silverman, H., Certain coefficients bounds for p-valent functions, Int. J. Math. Math. Sci., vol. 2007, Art. ID 46576, 11 pp. Zbl1139.30307
- Shanmugam, T. N., Owa, S., Ramachandran, C., Sivasubramanian, S. and Nakamura, Y., On certain coefficient inequalities for multivalent functions, J. Math. Inequal. 3 (2009), 31-41. Zbl1160.30332
- Sălăgean, G. Ş., Subclasses of univalent functions, Complex Analysis - fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lectures Notes in Math., 1013, Springer-Verlag, Berlin, 1983, 362-372.