Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees
Mustapha Chellali; Nader Jafari Rad
Discussiones Mathematicae Graph Theory (2013)
- Volume: 33, Issue: 2, page 337-346
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11-22. doi:10.1016/j.disc.2003.06.004[Crossref] Zbl1036.05034
- [2] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of domination parameters in trees, Discrete Math. 260 (2003) 77-87. doi:10.1016/S0012-365X(02)00451-X[Crossref] Zbl1020.05051
- [3] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of upper domination and independence in trees, Util. Math. 59 (2001) 111-124. Zbl0980.05038
- [4] T.W. Haynes and P.J. Slater, Paired-domination in graphs, Networks 32 (1998) 199-206. doi:10.1002/(SICI)1097-0037(199810)32:3h199::AID-NET4i3.0.CO;2-F[Crossref] Zbl0997.05074
- [5] M.A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002) 325-334. doi:10.7151/dmgt.1178[Crossref]
- [6] M.A. Henning, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003) 101-115. doi:10.1016/S0012-365X(03)00040-2[Crossref]
- [7] N. Jafari Rad and L. Volkmann, Changing and unchanging the Roman domination number of a graph, Util. Math. 89 (2012) 79-95. Zbl1273.05162