On the Independence Number of Edge Chromatic Critical Graphs
Shiyou Pang; Lianying Miao; Wenyao Song; Zhengke Miao
Discussiones Mathematicae Graph Theory (2014)
- Volume: 34, Issue: 3, page 577-584
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topShiyou Pang, et al. "On the Independence Number of Edge Chromatic Critical Graphs." Discussiones Mathematicae Graph Theory 34.3 (2014): 577-584. <http://eudml.org/doc/268142>.
@article{ShiyouPang2014,
abstract = {In 1968, Vizing conjectured that for any edge chromatic critical graph G = (V,E) with maximum degree △ and independence number α (G), α (G) ≤ [...] . It is known that α (G) < [...] |V |. In this paper we improve this bound when △≥ 4. Our precise result depends on the number n2 of 2-vertices in G, but in particular we prove that α (G) ≤ [...] |V | when △ ≥ 5 and n2 ≤ 2(△− 1)},
author = {Shiyou Pang, Lianying Miao, Wenyao Song, Zhengke Miao},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {edge coloring; edge-chromatic critical graphs; independence number},
language = {eng},
number = {3},
pages = {577-584},
title = {On the Independence Number of Edge Chromatic Critical Graphs},
url = {http://eudml.org/doc/268142},
volume = {34},
year = {2014},
}
TY - JOUR
AU - Shiyou Pang
AU - Lianying Miao
AU - Wenyao Song
AU - Zhengke Miao
TI - On the Independence Number of Edge Chromatic Critical Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 3
SP - 577
EP - 584
AB - In 1968, Vizing conjectured that for any edge chromatic critical graph G = (V,E) with maximum degree △ and independence number α (G), α (G) ≤ [...] . It is known that α (G) < [...] |V |. In this paper we improve this bound when △≥ 4. Our precise result depends on the number n2 of 2-vertices in G, but in particular we prove that α (G) ≤ [...] |V | when △ ≥ 5 and n2 ≤ 2(△− 1)
LA - eng
KW - edge coloring; edge-chromatic critical graphs; independence number
UR - http://eudml.org/doc/268142
ER -
References
top- 1] G. Brinkmann, S.A. Choudum, S. Gr¨unewald and E. Steffen, Bounds for the inde- pendence number of critical graphs, Bull. London Math. Soc. 32 (2000) 137-140. doi:10.1112/S0024609399006645[Crossref]
- [2] S. Grünewald and E. Steffen, Independent sets and 2-factors in edge chromatic crit- ical graphs, J. Graph Theory 45 (2004) 113-118. doi:10.1002/jgt.10141[Crossref] Zbl1033.05041
- [3] R. Luo and Y. Zhao, A note on Vizing’s independence number conjecture of edge chromatic critical graphs, Discrete Math. 306 (2006) 1788-1790. doi:10.1016/j.disc.2006.03.040[WoS][Crossref]
- [4] R. Luo and Y. Zhao, An application of Vizing and Vizing-like adjacency lemmas to Vizing’s independence number conjecture of edge chromatic critical graphs, Discrete Math. 309 (2009) 2925-2929. doi:10.1016/j.disc.2008.06.019[Crossref][WoS] Zbl1200.05114
- [5] R. Luo, L.Y. Miao and Y. Zhao, The size of edge chromatic critical graphs with maximum degree 6, J. Graph Theory 60 (2009) 149-171. doi:10.1002/jgt.20351[Crossref]
- [6] L.Y. Miao, On the independence number of edge chromatic critical graphs, Ars Combin. 98 (2011) 471-481. Zbl1249.05289
- [7] D.P. Sanders and Y. Zhao, Planar graphs with maximum degree seven are Class I, J. Combin. Theory (B) 83 (2001) 201-212. doi:0.1006/jctb.2001.2047 Zbl1024.05031
- [8] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30 (in Russian).
- [9] V.G. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968) 117-134, Russian Math. Surveys 23 (1968) 125-142. doi:10.1070/RM1968v023n06ABEH001252[Crossref]
- [10] D.R. Woodall, The independence number of an edge chromatic critical graph, J. Graph Theory 66 (2011) 98-103. doi:10.1002/jgt.20493[Crossref] Zbl1216.05040
- [11] D.R. Woodall, The average degree of an edge-chromatic critical graph II, J. Graph Theory 56 (2007) 194-218. doi:10.1002/jgt.20259[Crossref] Zbl1137.05037
- [12] H.P. Yap, Some Topics in Graph Theory, London Math. Soc. Lecture Notes Ser. Vol. 108 (Cambridge Univ. Press, 1986). doi:10.1017/CBO9780511662065[Crossref] Zbl0588.05002
- [13] L. Zhang, Every planar graph with maximum degree 7 is of class 1, Graphs Combin. 16 (2000) 467-495. doi:10.1007/s003730070009[Crossref] Zbl0988.05042
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.