Classes of meromorphic multivalent functions with Montel’s normalization
Annales UMCS, Mathematica (2012)
- Volume: 66, Issue: 2, page 31-46
- ISSN: 2083-7402
Access Full Article
topAbstract
topHow to cite
topJacek Dziok. "Classes of meromorphic multivalent functions with Montel’s normalization." Annales UMCS, Mathematica 66.2 (2012): 31-46. <http://eudml.org/doc/268152>.
@article{JacekDziok2012,
abstract = {In the paper we define classes of meromorphic multivalent functions with Montel’s normalization. We investigate the coefficients estimates, distortion properties, the radius of starlikeness, subordination theorems and partial sums for the defined classes of functions. Some remarks depicting consequences of the main results are also mentioned.},
author = {Jacek Dziok},
journal = {Annales UMCS, Mathematica},
keywords = {Meromorphic functions; varying arguments; fixed points; Montel’s normalization; subordination; Hadamard product.; meromorphic functions; coefficients estimates; distortion properties; radius of starlikeness},
language = {eng},
number = {2},
pages = {31-46},
title = {Classes of meromorphic multivalent functions with Montel’s normalization},
url = {http://eudml.org/doc/268152},
volume = {66},
year = {2012},
}
TY - JOUR
AU - Jacek Dziok
TI - Classes of meromorphic multivalent functions with Montel’s normalization
JO - Annales UMCS, Mathematica
PY - 2012
VL - 66
IS - 2
SP - 31
EP - 46
AB - In the paper we define classes of meromorphic multivalent functions with Montel’s normalization. We investigate the coefficients estimates, distortion properties, the radius of starlikeness, subordination theorems and partial sums for the defined classes of functions. Some remarks depicting consequences of the main results are also mentioned.
LA - eng
KW - Meromorphic functions; varying arguments; fixed points; Montel’s normalization; subordination; Hadamard product.; meromorphic functions; coefficients estimates; distortion properties; radius of starlikeness
UR - http://eudml.org/doc/268152
ER -
References
top- [1] Aouf, M. K., Certain classes of meromorphic multivalent functions with positive coefficients, Math. Comput. Modelling 47 (2008), 328-340. Zbl1140.30004
- [2] Aouf, M. K., Certain subclasses of meromorphically p-valent functions with positive or negative coefficients, Math. Comput. Modelling 47 (2008), 997-1008.[WoS] Zbl1144.30302
- [3] Aouf, M. K., Silverman, H., Partial sums of certain meromorphic p-valent functions, J. Ineq. Pure and Appl. Math. 7(4) (2006), art. no. 119. Zbl1131.30307
- [4] Darwish, H. E., Meromorphic p-valent starlike functions with negative coefficients, J. Ineq. Pure and Appl. Math. 33 (2002), 967-76. Zbl1076.30505
- [5] Dziok, J., Classes of meromorphic functions associated with conic regions, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), 765-774.[WoS] Zbl1265.30046
- [6] Dziok, J., Srivastava, H. M., Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct. 14 (2003), 7-18.[Crossref] Zbl1040.30003
- [7] Montel, P., Leçons sur les Fonctions Univalentes ou Multivalentes, Gauthier-Villars, Paris, 1933. Zbl59.0346.14
- [8] Mogra, M. L., Meromorphic multivalent functions with positive coefficients I and II, Math. Japon. 35 (1990), 1-11 and 1089-1098. Zbl0705.30019
- [9] Silverman, H., Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997), 221-227. Zbl0894.30010
- [10] Silverman, H., Univalent functions with varying arguments, Houston J. Math. 7 (1981), 283-287. Zbl0472.30018
- [11] Silvia, E. M., Partial sums of convex functions of order α, Houston. J. Math. 11 (1985), 397-404. Zbl0596.30025
- [12] Srivastava, H. M., Owa, S., Certain classes of analytic functions with varying arguments, J. Math. Anal. Appl. 136 (1988), 217-228. Zbl0643.30008
- [13] Raina, R. K., Srivastava, H. M., A new class of meromorphically multivalent functions with applications to generalized hypergeometric functions, Math. Comput. Modelling 43 (2006), 350-356. Zbl1140.30007
- [14] Wilf, H. S., Subordinating factor sequence for convex maps of the unit circle, Proc. Amer. Math. Soc. 12 (1961), 689-693.[Crossref] Zbl0100.07201
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.