Fixed points of periodic mappings in Hilbert spaces

Víctor García; Helga Nathansky

Annales UMCS, Mathematica (2010)

  • Volume: 64, Issue: 2, page 37-48
  • ISSN: 2083-7402

Abstract

top
In this paper we give new estimates for the Lipschitz constants of n-periodic mappings in Hilbert spaces, in order to assure the existence of fixed points and retractions on the fixed point set.

How to cite

top

Víctor García, and Helga Nathansky. "Fixed points of periodic mappings in Hilbert spaces." Annales UMCS, Mathematica 64.2 (2010): 37-48. <http://eudml.org/doc/268162>.

@article{VíctorGarcía2010,
abstract = {In this paper we give new estimates for the Lipschitz constants of n-periodic mappings in Hilbert spaces, in order to assure the existence of fixed points and retractions on the fixed point set.},
author = {Víctor García, Helga Nathansky},
journal = {Annales UMCS, Mathematica},
keywords = {Fixed point; retractions; periodic mappings; fixed point; retraction; periodic mapping},
language = {eng},
number = {2},
pages = {37-48},
title = {Fixed points of periodic mappings in Hilbert spaces},
url = {http://eudml.org/doc/268162},
volume = {64},
year = {2010},
}

TY - JOUR
AU - Víctor García
AU - Helga Nathansky
TI - Fixed points of periodic mappings in Hilbert spaces
JO - Annales UMCS, Mathematica
PY - 2010
VL - 64
IS - 2
SP - 37
EP - 48
AB - In this paper we give new estimates for the Lipschitz constants of n-periodic mappings in Hilbert spaces, in order to assure the existence of fixed points and retractions on the fixed point set.
LA - eng
KW - Fixed point; retractions; periodic mappings; fixed point; retraction; periodic mapping
UR - http://eudml.org/doc/268162
ER -

References

top
  1. Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990. Zbl0708.47031
  2. Goebel, K., Złotkiewicz, E., Some fixed point theorems in Banach spaces, Colloq. Math. 23 (1971), 103-106. Zbl0223.47022
  3. Górnicki, J., Pupka, K., Fixed points of rotative mappings in Banach spaces, J. Nonlinear Convex Anal. 6(2) (2005), 217-233. Zbl1093.47051
  4. Kaczor, W., Koter-Mórgowska M., Rotative mappings and mappings with constant displacement, Handbook of Metric Fixed Point Theory, Kluwer Academic Publisher, Dordrecht, 2001, 323-337. Zbl1032.47031
  5. Koter-Mórgowska, M., Rotative mappings in Hilbert space, J. Nonlinear Convex Anal. 1(3) (2000), 295-304. Zbl0980.47045

NotesEmbed ?

top

You must be logged in to post comments.