# On certain general integral operators of analytic functions

Annales UMCS, Mathematica (2012)

- Volume: 66, Issue: 1, page 13-23
- ISSN: 2083-7402

## Access Full Article

top## Abstract

top## How to cite

topB. Frasin. "On certain general integral operators of analytic functions." Annales UMCS, Mathematica 66.1 (2012): 13-23. <http://eudml.org/doc/268168>.

@article{B2012,

abstract = {In this paper, we obtain new sufficient conditions for the operators Fα1,α2,…,αn,β(z) and Gα1,α2,…,αn,β(z) to be univalent in the open unit disc U, where the functions f1, f2, …, fn belong to the classes S*(a, b) and K(a, b). The order of convexity for the operators Fα1,α2,…,αn,β(z) and Gα1,α2,…,αn,β(z) is also determined. Furthermore, and for β = 1, we obtain sufficient conditions for the operators Fn(z) and Gn(z) to be in the class K(a, b). Several corollaries and consequences of the main results are also considered.},

author = {B. Frasin},

journal = {Annales UMCS, Mathematica},

keywords = {Analytic functions; starlike and convex functions; integral operator; starlike functions; convex functions},

language = {eng},

number = {1},

pages = {13-23},

title = {On certain general integral operators of analytic functions},

url = {http://eudml.org/doc/268168},

volume = {66},

year = {2012},

}

TY - JOUR

AU - B. Frasin

TI - On certain general integral operators of analytic functions

JO - Annales UMCS, Mathematica

PY - 2012

VL - 66

IS - 1

SP - 13

EP - 23

AB - In this paper, we obtain new sufficient conditions for the operators Fα1,α2,…,αn,β(z) and Gα1,α2,…,αn,β(z) to be univalent in the open unit disc U, where the functions f1, f2, …, fn belong to the classes S*(a, b) and K(a, b). The order of convexity for the operators Fα1,α2,…,αn,β(z) and Gα1,α2,…,αn,β(z) is also determined. Furthermore, and for β = 1, we obtain sufficient conditions for the operators Fn(z) and Gn(z) to be in the class K(a, b). Several corollaries and consequences of the main results are also considered.

LA - eng

KW - Analytic functions; starlike and convex functions; integral operator; starlike functions; convex functions

UR - http://eudml.org/doc/268168

ER -

## References

top- Ahlfors, L. V., Sufficient conditions for quasiconformal extension, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), pp. 23-29. Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974.
- Becker, J., Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23-43. Zbl0239.30015
- Becker, J., Löwnersche Differentialgleichung und Schlichtheitskriterien, Math. Ann. 202 (1973), 321-335. Zbl0236.30024
- Breaz, D., Univalence properties for a general integral operator, Bull. Korean Math. Soc. 46 (2009), no. 3, 439-446.[Crossref][WoS] Zbl1163.30015
- Breaz, D., Breaz, N., Two integral operators, Studia Universitatis Babeş-Bolyai Math., 47 (2002), no. 3, 13-19. Zbl1027.30018
- Breaz, D., Breaz, N., Univalence conditions for certain integral operators, Studia Universitatis Babeş-Bolyai, Mathematica, 47 (2002), no. 2, 9-15. Zbl1027.30046
- Breaz, D., Owa, S., Some extensions of univalent conditions for certain integral operators, Math. Inequal. Appl., 10 (2007), no. 2, 321-325. Zbl1198.30011
- Bulut, S., Univalence preserving integral operators defined by generalized Al- Oboudi differential operators, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 17 (2009), no. 1, 37-50. Zbl1249.30023
- Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot-Bouquet differential subordination, General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhäuser, Basel, 1983.
- Frasin, B. A., General integral operator defined by Hadamard product, Mat. Vesnik, 62 (2010), no. 2, 127-136. Zbl1265.30053
- Frasin. B. A., Aouf, M. K., Univalence conditions for a new general integral operator, Hacet. J. Math. Stat., 39 (2010), no. 4, 567-575. Zbl1237.47050
- Jabkubowski, Z. J., On the coefficients of starlike functions of some classes, Ann. Polon. Math. 26 (1972), 305-313.
- Pascu, N., An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session: Simion Stoïlow (Braşov, 1987), 43-48, Univ. Braşov, Braşov, 1987.
- Pescar, V., A new generalization of Ahlfor's and Becker's criterion of univalence, Bull. Malaysian Math. Soc. (2) 19 (1996), no. 2, 53-54. Zbl0880.30020
- Seenivasagan, N., Sufficient conditions for univalence, Applied Math. E-Notes, 8 (2008), 30-35. Zbl1161.30316
- Seenivasagan, N., Breaz, D., Certain sufficient conditions for univalence, Gen. Math. 15 (2007), no. 4, 7-15. Zbl1199.30161

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.