Maxclique and Unit Disk Characterizations of Strongly Chordal Graphs
Pablo De Caria; Terry A. McKee
Discussiones Mathematicae Graph Theory (2014)
- Volume: 34, Issue: 3, page 593-602
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topPablo De Caria, and Terry A. McKee. "Maxclique and Unit Disk Characterizations of Strongly Chordal Graphs." Discussiones Mathematicae Graph Theory 34.3 (2014): 593-602. <http://eudml.org/doc/268169>.
@article{PabloDeCaria2014,
abstract = {Maxcliques (maximal complete subgraphs) and unit disks (closed neighborhoods of vertices) sometime play almost interchangeable roles in graph theory. For instance, interchanging them makes two existing characterizations of chordal graphs into two new characterizations. More intriguingly, these characterizations of chordal graphs can be naturally strengthened to new characterizations of strongly chordal graphs},
author = {Pablo De Caria, Terry A. McKee},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {chordal graph; strongly chordal graph; clique; maxclique; closed neighborhood},
language = {eng},
number = {3},
pages = {593-602},
title = {Maxclique and Unit Disk Characterizations of Strongly Chordal Graphs},
url = {http://eudml.org/doc/268169},
volume = {34},
year = {2014},
}
TY - JOUR
AU - Pablo De Caria
AU - Terry A. McKee
TI - Maxclique and Unit Disk Characterizations of Strongly Chordal Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 3
SP - 593
EP - 602
AB - Maxcliques (maximal complete subgraphs) and unit disks (closed neighborhoods of vertices) sometime play almost interchangeable roles in graph theory. For instance, interchanging them makes two existing characterizations of chordal graphs into two new characterizations. More intriguingly, these characterizations of chordal graphs can be naturally strengthened to new characterizations of strongly chordal graphs
LA - eng
KW - chordal graph; strongly chordal graph; clique; maxclique; closed neighborhood
UR - http://eudml.org/doc/268169
ER -
References
top- [1] A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin, Dually chordal graphs, SIAM J. Discrete Math. 11 (1998) 437-455. doi:10.1137/S0895480193253415[Crossref] Zbl0909.05037
- [2] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719796[Crossref]
- [3] P. De Caria and M. Gutierrez, On minimal vertex separators of dually chordal graphs: properties and characterizations, Discrete Appl. Math. 160 (2012) 2627-2635. doi:10.1016/j.dam.2012.02.022[WoS][Crossref] Zbl1259.05096
- [4] P. De Caria and M. Gutierrez, On the correspondence between tree representations of chordal and dually chordal graphs, Discrete Appl. Math. 164 (2014) 500-511. doi:10.1016/j.dam.2013.07.011[Crossref][WoS] Zbl1288.05052
- [5] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189. doi:10.1016/0012-365X(83)90154-1[Crossref]
- [6] T.A. McKee, How chordal graphs work, Bull. Inst. Combin. Appl. 9 (1993) 27-39. Zbl0803.05034
- [7] T.A. McKee, A new characterization of strongly chordal graphs, Discrete Math. 205 (1999) 245-247. doi:10.1016/S0012-365X(99)00107-7[Crossref]
- [8] T.A. McKee, Subgraph trees in graph theory, Discrete Math. 270 (2003) 3-12. doi:10.1016/S0012-365X(03)00161-4[Crossref]
- [9] T.A. McKee, The neighborhood characteristic parameter for graphs, Electron. J. Combin. 10 (2003) #R20. Zbl1023.05118
- [10] T.A. McKee, When fundamental cycles span cliques, Congr. Numer. 191 (2008) 213-218. Zbl1168.05037
- [11] T.A. McKee, Simplicial and nonsimplicial complete subgraphs, Discuss. Math. Zbl1229.05237
- Graph Theory 31 (2011) 577-586. doi:10.7151/dmgt.1566[Crossref]
- [12] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719802[Crossref] Zbl0945.05003
- [13] T.A. McKee and E. Prisner, An approach to graph-theoretic homology, Combinatorics, Graph Theory and Algorithms Y. Alavi, et al. Eds, New Issues Press, Kalamazoo, MI (1999) 2 631-640.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.