The Incidence Chromatic Number of Toroidal Grids
Discussiones Mathematicae Graph Theory (2013)
- Volume: 33, Issue: 2, page 315-327
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topÉric Sopena, and Jiaojiao Wu. "The Incidence Chromatic Number of Toroidal Grids." Discussiones Mathematicae Graph Theory 33.2 (2013): 315-327. <http://eudml.org/doc/268177>.
@article{ÉricSopena2013,
abstract = {An incidence in a graph G is a pair (v, e) with v ∈ V (G) and e ∈ E(G), such that v and e are incident. Two incidences (v, e) and (w, f) are adjacent if v = w, or e = f, or the edge vw equals e or f. The incidence chromatic number of G is the smallest k for which there exists a mapping from the set of incidences of G to a set of k colors that assigns distinct colors to adjacent incidences. In this paper, we prove that the incidence chromatic number of the toroidal grid Tm,n = Cm2Cn equals 5 when m, n ≡ 0(mod 5) and 6 otherwise.},
author = {Éric Sopena, Jiaojiao Wu},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {incidence coloring; Cartesian product of cycles; toroidal grid; Cartesian product},
language = {eng},
number = {2},
pages = {315-327},
title = {The Incidence Chromatic Number of Toroidal Grids},
url = {http://eudml.org/doc/268177},
volume = {33},
year = {2013},
}
TY - JOUR
AU - Éric Sopena
AU - Jiaojiao Wu
TI - The Incidence Chromatic Number of Toroidal Grids
JO - Discussiones Mathematicae Graph Theory
PY - 2013
VL - 33
IS - 2
SP - 315
EP - 327
AB - An incidence in a graph G is a pair (v, e) with v ∈ V (G) and e ∈ E(G), such that v and e are incident. Two incidences (v, e) and (w, f) are adjacent if v = w, or e = f, or the edge vw equals e or f. The incidence chromatic number of G is the smallest k for which there exists a mapping from the set of incidences of G to a set of k colors that assigns distinct colors to adjacent incidences. In this paper, we prove that the incidence chromatic number of the toroidal grid Tm,n = Cm2Cn equals 5 when m, n ≡ 0(mod 5) and 6 otherwise.
LA - eng
KW - incidence coloring; Cartesian product of cycles; toroidal grid; Cartesian product
UR - http://eudml.org/doc/268177
ER -
References
top- [1] I. Algor and N. Alon, The star arboricity of graphs, Discrete Math. 75 (1989) 11-22. doi:10.1016/0012-365X(89)90073-3[Crossref] Zbl0684.05033
- [2] R.A. Brualdi and J.J. Quinn Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993) 51-58. doi:10.1016/0012-365X(93)90286-3[Crossref]
- [3] P. Erdős and J. Nešetřil, Problem, In: Irregularities of Partitions, G. Hal´asz and V.T. S´os (Eds.) (Springer, New-York) 162-163.
- [4] G. Fertin, E. Goddard and A. Raspaud, Acyclic and k-distance coloring of the grid, Inform. Proc. Lett. 87 (2003) 51-58. doi:10.1016/S0020-0190(03)00232-1[Crossref]
- [5] B. Guiduli, On incidence coloring and star arboricity of graphs, Discrete Math. 163 (1997) 275-278. doi:10.1016/0012-365X(95)00342-T[Crossref] Zbl0871.05022
- [6] M. Hosseini Dolama and E. Sopena, On the maximum average degree and the incidence chromatic number of a graph, Discrete Math. Theor. Comput. Sci. 7 (2005) 203-216. Zbl1153.05318
- [7] M. Hosseini Dolama, E. Sopena and X. Zhu, Incidence coloring of k-degenerated graphs, Discrete Math. 283 (2004) 121-128. doi:10.1016/j.disc.2004.01.015[Crossref] Zbl1064.05057
- [8] C.I. Huang, Y.L. Wang and S.S. Chung, The incidence coloring numbers of meshes, Comput. Math. Appl. 48 (2004) 1643-1649. doi:10.1016/j.camwa.2004.02.006[Crossref] Zbl1062.05059
- [9] D. Li and M. Liu, Incidence coloring of the squares of some graphs, Discrete Math. 308 (2008) 6569-6574. doi:10.1016/j.disc.2007.11.047[Crossref][WoS]
- [10] X. Li and J. Tu, NP-completeness of 4-incidence colorability of semi-cubic graphs, Discrete Math. 308 (2008) 1334-1340. doi:10.1016/j.disc.2007.03.076[WoS]
- [11] M. Maydanskiy, The incidence coloring conjecture for graphs of maximum degree 3, Discrete Math. 292 (2005) 131-141. doi:10.1016/j.disc.2005.02.003[Crossref] Zbl1059.05051
- [12] W.C. Shiu, P.C.B. Lam and D.L. Chen, On incidence coloring for some cubic graphs, Discrete Math. 252 (2002) 259-266. doi:10.1016/S0012-365X(01)00457-5[Crossref]
- [13] W.C. Shiu and P.K. Sun, Invalid proofs on incidence coloring, Discrete Math. 308 (2008) 6575-6580. doi:10.1016/j.disc.2007.11.030[Crossref][WoS] Zbl1191.05045
- [14] E. Sopena and J. Wu, Coloring the square of the Cartesian product of two cycles, Discrete Math. 310 (2010) 2327-2333. doi:10.1016/j.disc.2010.05.011[Crossref][WoS] Zbl1213.05101
- [15] S.D. Wang, D.L. Chen and S.C. Pang, The incidence coloring number of Halin graphs and outerplanar graphs, Discrete Math. 25 (2002) 397-405. doi:10.1016/S0012-365X(01)00302-8[Crossref]
- [16] J. Wu, Some results on the incidence coloring number of a graph, Discrete Math. 309 (2009) 3866-3870. doi:10.1016/j.disc.2008.10.027[Crossref][WoS] Zbl1250.05051
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.